Suppr超能文献

快速充电锂离子电池石墨负极的动力学极限

Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries.

作者信息

Weng Suting, Yang Gaojing, Zhang Simeng, Liu Xiaozhi, Zhang Xiao, Liu Zepeng, Cao Mengyan, Ateş Mehmet Nurullah, Li Yejing, Chen Liquan, Wang Zhaoxiang, Wang Xuefeng

机构信息

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.

School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.

出版信息

Nanomicro Lett. 2023 Sep 22;15(1):215. doi: 10.1007/s40820-023-01183-6.

Abstract

Fast-charging lithium-ion batteries are highly required, especially in reducing the mileage anxiety of the widespread electric vehicles. One of the biggest bottlenecks lies in the sluggish kinetics of the Li intercalation into the graphite anode; slow intercalation will lead to lithium metal plating, severe side reactions, and safety concerns. The premise to solve these problems is to fully understand the reaction pathways and rate-determining steps of graphite during fast Li intercalation. Herein, we compare the Li diffusion through the graphite particle, interface, and electrode, uncover the structure of the lithiated graphite at high current densities, and correlate them with the reaction kinetics and electrochemical performances. It is found that the rate-determining steps are highly dependent on the particle size, interphase property, and electrode configuration. Insufficient Li diffusion leads to high polarization, incomplete intercalation, and the coexistence of several staging structures. Interfacial Li diffusion and electrode transportation are the main rate-determining steps if the particle size is less than 10 μm. The former is highly dependent on the electrolyte chemistry and can be enhanced by constructing a fluorinated interphase. Our findings enrich the understanding of the graphite structural evolution during rapid Li intercalation, decipher the bottleneck for the sluggish reaction kinetics, and provide strategic guidelines to boost the fast-charging performance of graphite anode.

摘要

快速充电的锂离子电池需求迫切,尤其是在减少广泛使用的电动汽车的里程焦虑方面。最大的瓶颈之一在于锂离子嵌入石墨负极的动力学缓慢;缓慢的嵌入会导致锂金属镀层、严重的副反应以及安全问题。解决这些问题的前提是充分了解快速锂嵌入过程中石墨的反应路径和速率决定步骤。在此,我们比较了锂在石墨颗粒、界面和电极中的扩散情况,揭示了高电流密度下锂化石墨的结构,并将它们与反应动力学和电化学性能相关联。研究发现,速率决定步骤高度依赖于颗粒尺寸、界面性质和电极结构。锂扩散不足会导致高极化、不完全嵌入以及多种分级结构的共存。如果颗粒尺寸小于10μm,界面锂扩散和电极传输是主要的速率决定步骤。前者高度依赖于电解质化学性质,并且可以通过构建氟化界面来增强。我们的研究结果丰富了对快速锂嵌入过程中石墨结构演变的理解,破解了反应动力学缓慢的瓶颈,并为提高石墨负极的快速充电性能提供了战略指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/565b/10516836/67daec180d31/40820_2023_1183_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验