Wang Meng, Wang Juanle, Yu Mingming, Yang Fei
State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research of Chinese Academy of Sciences, Beijing, 100101, China.
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
Sci Rep. 2024 Oct 31;14(1):26219. doi: 10.1038/s41598-024-78303-8.
Wind speed prediction is crucial for precisely wind power forecasting and reduced maintenance costs. Highland regions, which possess a considerable wind potential, present complex meteorological conditions, making wind speed prediction challenging. Traditional weather forecasting relies on complex statistical methods and extensive prior knowledge. While recent deep learning models have improved prediction accuracy, they often assume uniform influence weight structure, limiting model effectiveness. This study introduces an enhanced Conditional Local Convolution Recurrent Network (CLCRN) model to improve spatiotemporal wind speed forecasting using multidimensional meteorological inputs such as temperature, pressure, and dew point, alongside wind components. This model addresses uniform influence model weight issue by redesigning convolution kernels to better capture local meteorological features and integrating multiple influencing factors. Our model consistently achieves lower Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) values across various prediction intervals (3, 6, 9, and 12 h) compared to other models, supported by the meteorological station data from 2019 to 2021. Furthermore, the spatial distribution of the local convolution weights aligns with local wind velocity patterns in Inner Mongolia, enhancing model interpretability. These results demonstrate potential for practical applications in renewable energy planning and wind dynamics simulation.
风速预测对于精确的风力发电预测和降低维护成本至关重要。拥有可观风能潜力的高地地区呈现出复杂的气象条件,这使得风速预测具有挑战性。传统的天气预报依赖于复杂的统计方法和广泛的先验知识。虽然最近的深度学习模型提高了预测精度,但它们通常假设影响权重结构是均匀的,这限制了模型的有效性。本研究引入了一种增强型条件局部卷积循环网络(CLCRN)模型,以利用温度、压力、露点等多维气象输入以及风分量来改进时空风速预测。该模型通过重新设计卷积核来更好地捕捉局部气象特征并整合多个影响因素,从而解决了均匀影响模型权重问题。与其他模型相比,我们的模型在2019年至2021年气象站数据的支持下,在各个预测区间(3、6、9和12小时)始终实现更低的平均绝对误差(MAE)和均方根误差(RMSE)值。此外,局部卷积权重的空间分布与内蒙古的局部风速模式一致,增强了模型的可解释性。这些结果证明了在可再生能源规划和风力动力学模拟中的实际应用潜力。