Belletreche Moussa, Bailek Nadjem, Abotaleb Mostafa, Bouchouicha Kada, Zerouali Bilel, Guermoui Mawloud, Kuriqi Alban, Alharbi Amal H, Khafaga Doaa Sami, El-Shimy Mohamed, El-Kenawy El-Sayed M
Department of Matter Sciences, Faculty of Matter Sciences, Mathematics, and Computer Science, Ahmed Draia University of Adrar, Adrar, 01000, Algeria.
Laboratory of Mathematics Modeling and Applications, Department of Mathematics and Computer Science, Faculty of Matter Sciences, Mathematics, and Computer Science, Ahmed Draia University of Adrar, Adrar, 01000, Algeria.
Sci Rep. 2024 Sep 19;14(1):21842. doi: 10.1038/s41598-024-73076-6.
This study introduces an optimized hybrid deep learning approach that leverages meteorological data to improve short-term wind energy forecasting in desert regions. Over a year, various machine learning and deep learning models have been tested across different wind speed categories, with multiple performance metrics used for evaluation. Hyperparameter optimization for the LSTM and Conv-Dual Attention Long Short-Term Memory (Conv-DA-LSTM) architectures was performed. A comparison of the techniques indicates that the deep learning methods consistently outperform the classical techniques, with Conv-DA-LSTM yielding the best overall performance with a clear margin. This method obtained the lowest error rates (RMSE: 71.866) and the highest level of accuracy (R: 0.93). The optimization clearly works for higher wind speeds, achieving a remarkable improvement of 22.9%. When we look at the monthly performance, all the months presented at least some level of consistent enhancement (RRMSE reductions from 1.6 to 10.2%). These findings highlight the potential of advanced deep learning techniques in enhancing wind energy forecasting accuracy, particularly in challenging desert environments. The hybrid method developed in this study presents a promising direction for improving renewable energy management. This allows for more efficient resource allocation and improves wind resource predictability.
本研究介绍了一种优化的混合深度学习方法,该方法利用气象数据来改进沙漠地区的短期风能预测。在一年的时间里,针对不同风速类别测试了各种机器学习和深度学习模型,并使用多个性能指标进行评估。对长短期记忆网络(LSTM)和卷积双注意力长短期记忆网络(Conv-DA-LSTM)架构进行了超参数优化。技术比较表明,深度学习方法始终优于传统技术,Conv-DA-LSTM的整体性能最佳,优势明显。该方法获得了最低的错误率(均方根误差:71.866)和最高的准确率(相关系数:0.93)。优化对于更高风速显然有效,实现了22.9%的显著提升。从月度性能来看,所有月份都至少有一定程度的持续提升(相对均方根误差降低了1.6%至10.2%)。这些发现凸显了先进深度学习技术在提高风能预测准确性方面的潜力,特别是在具有挑战性的沙漠环境中。本研究开发的混合方法为改善可再生能源管理提供了一个有前景的方向。这有助于实现更高效的资源分配,并提高风能资源的可预测性。