Suppr超能文献

使用大语言模型进行生物调节事件提取:以水稻文献为例

Bioregulatory event extraction using large language models: a case study of rice literature.

作者信息

Yao Xinzhi, He Zhihan, Xia Jingbo

机构信息

College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China.

出版信息

Genomics Inform. 2024 Oct 31;22(1):20. doi: 10.1186/s44342-024-00022-3.

Abstract

The extraction of biological regulation events has been a key focus in the field of biomedical nature language processing (BioNLP). However, existing methods often encounter challenges such as cascading errors in text mining pipelines and limitations in topic coverage from the selected corpus. Fortunately, the emergence of large language models (LLMs) presents a potential solution due to their robust semantic understanding and extensive knowledge base. To explore this potential, our project at the Biomedical Linked Annotation Hackathon 8 (BLAH 8) investigates the feasibility of using LLMs to extract biological regulation events. Our findings, based on the analysis of rice literature, demonstrate the promising performance of LLMs in this task, while also highlighting several concerns that must be addressed in future LLM-based application in low-resource topic.

摘要

生物调控事件的提取一直是生物医学自然语言处理(BioNLP)领域的关键焦点。然而,现有方法常常面临诸如文本挖掘管道中的级联错误以及所选语料库主题覆盖范围有限等挑战。幸运的是,大语言模型(LLMs)的出现因其强大的语义理解能力和广泛的知识库而提供了一种潜在的解决方案。为了探索这种潜力,我们在生物医学链接注释黑客马拉松8(BLAH 8)上的项目研究了使用大语言模型提取生物调控事件的可行性。我们基于对水稻文献的分析得出的结果表明,大语言模型在这项任务中表现出了令人期待的性能,同时也突出了在未来基于大语言模型的低资源主题应用中必须解决的几个问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9472/11529424/13002da049f4/44342_2024_22_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验