Arsiwalla Xerxes D, Solé Ricard, Moulin-Frier Clément, Herreros Ivan, Sánchez-Fibla Martí, Verschure Paul
Departament of Information and Communication Technologies, Universitat Pompeu Fabra (UPF), 08018 Barcelona, Spain.
Complex Systems Lab, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
NeuroSci. 2023 Mar 27;4(2):79-102. doi: 10.3390/neurosci4020009. eCollection 2023 Jun.
In this perspective article, we show that a morphospace, based on information-theoretic measures, can be a useful construct for comparing biological agents with artificial intelligence (AI) systems. The axes of this space label three kinds of complexity: (i) autonomic, (ii) computational and (iii) social complexity. On this space, we map biological agents such as bacteria, bees, C. elegans, primates and humans; as well as AI technologies such as deep neural networks, multi-agent bots, social robots, Siri and Watson. A complexity-based conceptualization provides a useful framework for identifying defining features and classes of conscious and intelligent systems. Starting with cognitive and clinical metrics of consciousness that assess awareness and wakefulness, we ask how AI and synthetically engineered life-forms would measure on homologous metrics. We argue that awareness and wakefulness stem from computational and autonomic complexity. Furthermore, tapping insights from cognitive robotics, we examine the functional role of consciousness in the context of evolutionary games. This points to a third kind of complexity for describing consciousness, namely, social complexity. Based on these metrics, our morphospace suggests the possibility of additional types of consciousness other than biological; namely, synthetic, group-based and simulated. This space provides a common conceptual framework for comparing traits and highlighting design principles of minds and machines.
在这篇观点文章中,我们表明,基于信息论测度的形态空间可以成为一种有用的结构,用于比较生物主体与人工智能(AI)系统。这个空间的轴标注了三种复杂性:(i)自主性,(ii)计算性和(iii)社会性复杂性。在这个空间上,我们绘制了诸如细菌、蜜蜂、秀丽隐杆线虫、灵长类动物和人类等生物主体;以及诸如深度神经网络、多智能体机器人、社交机器人、Siri和Watson等人工智能技术。基于复杂性的概念化为识别有意识和智能系统的定义特征及类别提供了一个有用的框架。从评估意识和觉醒状态的认知和临床指标出发,我们探讨人工智能和合成工程生命形式在同源指标上的表现。我们认为,意识和觉醒源于计算性和自主性复杂性。此外,借鉴认知机器人学的见解,我们在进化博弈的背景下研究意识的功能作用。这指出了描述意识的第三种复杂性,即社会性复杂性。基于这些指标,我们的形态空间表明,除了生物意识之外,还可能存在其他类型的意识;即合成意识、群体意识和模拟意识。这个空间为比较特征和突出心智与机器的设计原则提供了一个共同的概念框架。