Suppr超能文献

经导管主动脉瓣置换术中成像人工智能的现状

The Current Landscape of Artificial Intelligence in Imaging for Transcatheter Aortic Valve Replacement.

作者信息

Sun Shawn, Yeh Leslie, Imanzadeh Amir, Kooraki Soheil, Kheradvar Arash, Bedayat Arash

机构信息

Radiology Department, UCI Medical Center, University of California, Irvine, USA.

Independent Researcher, Anaheim, CA 92803, USA.

出版信息

Curr Radiol Rep. 2024;12(11-12):113-120. doi: 10.1007/s40134-024-00431-w. Epub 2024 Oct 10.

Abstract

PURPOSE

This review explores the current landscape of AI applications in imaging for TAVR, emphasizing the potential and limitations of these tools for (1) automating the image analysis and reporting process, (2) improving procedural planning, and (3) offering additional insight into post-TAVR outcomes. Finally, the direction of future research necessary to bridge these tools towards clinical integration is discussed.

RECENT FINDINGS

Transcatheter aortic valve replacement (TAVR) has become a pivotal treatment option for select patients with severe aortic stenosis, and its indication for use continues to broaden. Noninvasive imaging techniques such as CTA and MRA have become routine for patient selection, preprocedural planning, and predicting the risk of complications. As the current methods for pre-TAVR image analysis are labor-intensive and have significant inter-operator variability, experts are looking towards artificial intelligence (AI) as a potential solution.

SUMMARY

AI has the potential to significantly enhance the planning, execution, and post-procedural follow up of TAVR. While AI tools are promising, the irreplaceable value of nuanced clinical judgment by skilled physician teams must not be overlooked. With continued research, collaboration, and careful implementation, AI can become an integral part in imaging for TAVR, ultimately improving patient care and outcomes.

摘要

目的

本综述探讨了人工智能在经导管主动脉瓣置换术(TAVR)成像中的应用现状,强调了这些工具在以下方面的潜力和局限性:(1)实现图像分析和报告过程的自动化;(2)改进手术规划;(3)深入了解TAVR术后结果。最后,讨论了将这些工具与临床整合所需的未来研究方向。

最新发现

经导管主动脉瓣置换术已成为特定严重主动脉瓣狭窄患者的关键治疗选择,其适用范围也在不断扩大。CTA和MRA等非侵入性成像技术已成为患者选择、术前规划和预测并发症风险的常规手段。由于目前TAVR术前图像分析方法劳动强度大且操作者之间存在显著差异,专家们将人工智能视为一种潜在的解决方案。

总结

人工智能有潜力显著提升TAVR的规划、实施和术后随访。虽然人工智能工具很有前景,但熟练医师团队细致入微的临床判断所具有的不可替代的价值不容忽视。通过持续的研究、合作和谨慎的实施,人工智能可以成为TAVR成像中不可或缺的一部分,最终改善患者护理和治疗结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0935/11526784/74599a214c65/nihms-2031249-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验