使用术前 CT 预测经导管主动脉瓣置换术后的死亡率。

Predicting mortality after transcatheter aortic valve replacement using preprocedural CT.

机构信息

Computer Vision Laboratory, ETH Zurich, 8092, Zurich, Switzerland.

Department of Cardiology, University Heart Center, University Hospital Zurich, 8091, Zurich, Switzerland.

出版信息

Sci Rep. 2024 May 31;14(1):12526. doi: 10.1038/s41598-024-63022-x.

Abstract

Transcatheter aortic valve replacement (TAVR) is a widely used intervention for patients with severe aortic stenosis. Identifying high-risk patients is crucial due to potential postprocedural complications. Currently, this involves manual clinical assessment and time-consuming radiological assessment of preprocedural computed tomography (CT) images by an expert radiologist. In this study, we introduce a probabilistic model that predicts post-TAVR mortality automatically using unprocessed, preprocedural CT and 25 baseline patient characteristics. The model utilizes CT volumes by automatically localizing and extracting a region of interest around the aortic root and ascending aorta. It then extracts task-specific features with a 3D deep neural network and integrates them with patient characteristics to perform outcome prediction. As missing measurements or even missing CT images are common in TAVR planning, the proposed model is designed with a probabilistic structure to allow for marginalization over such missing information. Our model demonstrates an AUROC of 0.725 for predicting all-cause mortality during postprocedure follow-up on a cohort of 1449 TAVR patients. This performance is on par with what can be achieved with lengthy radiological assessments performed by experts. Thus, these findings underscore the potential of the proposed model in automatically analyzing CT volumes and integrating them with patient characteristics for predicting mortality after TAVR.

摘要

经导管主动脉瓣置换术(TAVR)是一种广泛应用于严重主动脉瓣狭窄患者的介入治疗方法。由于潜在的术后并发症,识别高危患者至关重要。目前,这涉及到手动的临床评估和由专家放射科医生对术前计算机断层扫描(CT)图像进行耗时的放射学评估。在这项研究中,我们引入了一种概率模型,该模型使用未经处理的术前 CT 和 25 个基线患者特征自动预测 TAVR 后的死亡率。该模型通过自动定位并提取主动脉根部和升主动脉周围的感兴趣区域来利用 CT 体积。然后,它使用 3D 深度神经网络提取特定任务的特征,并将其与患者特征集成以进行结果预测。由于在 TAVR 计划中常见的是缺失测量值甚至缺失 CT 图像,因此所提出的模型具有概率结构,可用于对这种缺失信息进行边缘化。我们的模型在对 1449 例 TAVR 患者的队列进行术后随访时,预测全因死亡率的 AUROC 为 0.725。这一性能与专家进行的冗长放射学评估所能达到的性能相当。因此,这些发现强调了所提出的模型在自动分析 CT 体积并将其与患者特征集成以预测 TAVR 后死亡率方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d379/11143216/18abed60e10a/41598_2024_63022_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索