Suppr超能文献

脑成像和机器学习揭示了长期脓毒症中情境威胁记忆的功能网络解耦。

Brain imaging and machine learning reveal uncoupled functional network for contextual threat memory in long sepsis.

作者信息

Huerta Patricio T, Strohl Joshua J, Carrión Joseph

机构信息

Feinstein Institutes for Medical Research, Northwell Health.

出版信息

Res Sq. 2024 Oct 15:rs.3.rs-4870916. doi: 10.21203/rs.3.rs-4870916/v1.

Abstract

Positron emission tomography (PET) is a highly sensitive tool for studying physiology and metabolism through positron-emitting radionuclides that label molecular targets in the body with unparalleled specificity, without disturbing their biological function. Here, we introduce a small-animal technique called behavioral task-associated PET (beta-PET) consisting of two scans: the first after a mouse is familiarized with a conditioning chamber, and the second upon recall of contextual threat. Associative threat conditioning occurs between the scans. Beta-PET focuses on brain regions encoding threat memory (e.g., amygdala, prefrontal cortex) and contextual aspects (e.g., hippocampus, subiculum, entorhinal cortex). Our results show that beta-PET identifies a biologically defined functional network encoding contextual threat memory and its uncoupling in a mouse model of long sepsis. Moreover, machine learning algorithms (linear logistic regression) and ordinal trends analysis demonstrate that beta-PET robustly predicts the behavioral defense response and its breakdown during long sepsis.

摘要

正电子发射断层扫描(PET)是一种高度灵敏的工具,可通过发射正电子的放射性核素研究生理和代谢,这些放射性核素能以前所未有的特异性标记体内的分子靶点,且不会干扰其生物学功能。在此,我们介绍一种名为行为任务关联PET(β-PET)的小动物技术,它由两次扫描组成:第一次是在小鼠熟悉条件反射箱之后,第二次是在唤起情境性威胁时。两次扫描之间会发生联合性威胁条件反射。β-PET聚焦于编码威胁记忆的脑区(如杏仁核、前额叶皮层)和情境方面(如海马体、下托、内嗅皮层)。我们的结果表明,β-PET可识别在长期脓毒症小鼠模型中编码情境性威胁记忆及其解偶联的生物学定义功能网络。此外,机器学习算法(线性逻辑回归)和序数趋势分析表明,β-PET能可靠地预测长期脓毒症期间的行为防御反应及其崩溃。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b4/11527171/b4eb72212d3f/nihpp-rs4870916v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验