Huerta Patricio T, Strohl Joshua J, Carrión Joseph
Feinstein Institutes for Medical Research, Northwell Health.
Res Sq. 2024 Oct 15:rs.3.rs-4870916. doi: 10.21203/rs.3.rs-4870916/v1.
Positron emission tomography (PET) is a highly sensitive tool for studying physiology and metabolism through positron-emitting radionuclides that label molecular targets in the body with unparalleled specificity, without disturbing their biological function. Here, we introduce a small-animal technique called behavioral task-associated PET (beta-PET) consisting of two scans: the first after a mouse is familiarized with a conditioning chamber, and the second upon recall of contextual threat. Associative threat conditioning occurs between the scans. Beta-PET focuses on brain regions encoding threat memory (e.g., amygdala, prefrontal cortex) and contextual aspects (e.g., hippocampus, subiculum, entorhinal cortex). Our results show that beta-PET identifies a biologically defined functional network encoding contextual threat memory and its uncoupling in a mouse model of long sepsis. Moreover, machine learning algorithms (linear logistic regression) and ordinal trends analysis demonstrate that beta-PET robustly predicts the behavioral defense response and its breakdown during long sepsis.
正电子发射断层扫描(PET)是一种高度灵敏的工具,可通过发射正电子的放射性核素研究生理和代谢,这些放射性核素能以前所未有的特异性标记体内的分子靶点,且不会干扰其生物学功能。在此,我们介绍一种名为行为任务关联PET(β-PET)的小动物技术,它由两次扫描组成:第一次是在小鼠熟悉条件反射箱之后,第二次是在唤起情境性威胁时。两次扫描之间会发生联合性威胁条件反射。β-PET聚焦于编码威胁记忆的脑区(如杏仁核、前额叶皮层)和情境方面(如海马体、下托、内嗅皮层)。我们的结果表明,β-PET可识别在长期脓毒症小鼠模型中编码情境性威胁记忆及其解偶联的生物学定义功能网络。此外,机器学习算法(线性逻辑回归)和序数趋势分析表明,β-PET能可靠地预测长期脓毒症期间的行为防御反应及其崩溃。