Beric Aleksandra, Cisterna-García Alejandro, Martin Charissa, Kumar Ravindra, Alfradique-Dunham Isabel, Boyer Kevin, Saliu Ibrahim Olabayode, Yamada Shinnosuke, Sanford Jessie, Western Daniel, Liu Menghan, Alvarez Ignacio, Perlmutter Joel S, Norris Scott A, Pastor Pau, Zhao Guoyan, Botia Juan, Ibanez Laura
Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA.
NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO 63108, USA.
medRxiv. 2024 Oct 18:2024.10.18.24315717. doi: 10.1101/2024.10.18.24315717.
We aimed to identify plasma cell-free transcripts (cfRNA) associated with Parkinson's disease (PD) that also have a high predictive value to differentiate PD from healthy controls. Leveraging two independent populations from two different movement disorder centers we identified 2,188 differentially expressed cfRNAs after meta-analysis. The identified transcripts were enriched in PD relevant pathways, such as PD (p=9.26×10), ubiquitin-mediated proteolysis (p=7.41×10) and endocytosis (p=4.21×10). Utilizing in-house and publicly available brain, whole blood, and acellular plasma transcriptomic and proteomic PD datasets, we found significant overlap across dysregulated biological species in the different tissues and the different biological layers. We developed three predictive models containing increasing number of transcripts that can distinguish PD from healthy control with an area under the ROC Curve (AUC) ≥0.85. Finally, we showed that several of the predictive transcripts significantly correlate with symptom severity measured by UPDRS-III. Overall, we have demonstrated that cfRNA contains pathological signatures and has the potential to be utilized as biomarker to aid in PD diagnostics and monitoring.
我们旨在鉴定与帕金森病(PD)相关的血浆游离转录本(cfRNA),这些转录本在区分PD与健康对照方面也具有较高的预测价值。利用来自两个不同运动障碍中心的两个独立群体,经过荟萃分析,我们鉴定出2188个差异表达的cfRNA。所鉴定的转录本在与PD相关的通路中富集,如帕金森病(p = 9.26×10)、泛素介导的蛋白水解(p = 7.41×10)和内吞作用(p = 4.21×10)。利用内部和公开可用的脑、全血以及无细胞血浆转录组学和蛋白质组学PD数据集,我们发现在不同组织和不同生物层面中失调的生物种类之间存在显著重叠。我们开发了三个包含越来越多转录本的预测模型,这些模型能够以受试者工作特征曲线下面积(AUC)≥0.85区分PD与健康对照。最后,我们表明一些预测转录本与由统一帕金森病评定量表第三部分(UPDRS - III)测量的症状严重程度显著相关。总体而言,我们已经证明cfRNA包含病理特征,并且有潜力用作生物标志物以辅助PD的诊断和监测。