Suppr超能文献

身体成分作为评估未来肺癌风险的生物标志物。

Body composition as a biomarker for assessing future lung cancer risk.

作者信息

Wang Jing, Leader Joseph K, Meng Xin, Yu Tong, Wang Renwei, Herman James, Yuan Jian-Min, Wilson David, Pu Jiantao

出版信息

medRxiv. 2024 Oct 15:2024.10.14.24315477. doi: 10.1101/2024.10.14.24315477.

Abstract

PURPOSE

To investigate if body composition is a biomarker for assessing the risk of developing lung cancer.

MATERIALS AND METHODS

Low-dose computed tomography (LDCT) scans from the Pittsburgh Lung Screening Study (PLuSS) (n=3,635, 22 follow-up years) and NLST-ACRIN (n=16,435, 8 follow-up years) cohorts were used in the study. Artificial intelligence (AI) algorithms were developed to automatically segment and quantify subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), intramuscular adipose tissue (IMAT), skeletal muscle (SM), and bone. Cause-specific Cox proportional hazards models were used to evaluate the hazard ratios (HRs). Standard time-dependent receiver operating characteristic (ROC) analysis was used to evaluate the prognostic ability of different models over time.

RESULTS

The final composite models were formed by seven variables: age (HR=1.20), current smoking status (HR=1.59), bone volume (HR=1.79), SM density (HR=0.29), IMAT ratio (HR=0.33), IMAT density (HR=0.56), and SAT volume (HR=0.56). The models trained on the PLuSS cohort achieved a mean AUC of 0.76 (95% CI: 0.74-0.79) over 21 follow-up years and 0.70 (95% CI: 0.66-0.74) over the first 7 follow-up years for predicting lung cancer development within the PLuSS cohort. In contrast, models trained on the PLuSS cohort alone, as well as in combination with the NLST cohorts, achieved an AUC ranging from 0.61 to 0.68 in the NLST cohort over a 7-year follow-up period.

CONCLUSION

Body composition assessed on LDCT is a significant predictor of lung cancer risk and could improve the effectiveness of LDCT lung cancer screening by optimizing the screening eligibility and frequency.

SUMMARY STATEMENT

Body composition assessed on LDCT is a significant predictor of lung cancer risk and could improve the effectiveness of LDCT lung cancer screening by optimizing the screening eligibility and frequency.

KEY POINTS

This study unveils the significant associations between body tissues and lung cancer risk.The prediction models based on body composition alone, as well as the combination of demographics and body composition features can effectively identify patients at higher risk of developing lung cancer.

摘要

目的

研究身体成分是否为评估肺癌发生风险的生物标志物。

材料与方法

本研究使用了来自匹兹堡肺癌筛查研究(PLuSS)(n = 3635,随访22年)和NLST - ACRIN(n = 16435,随访8年)队列的低剂量计算机断层扫描(LDCT)数据。开发了人工智能(AI)算法以自动分割并量化皮下脂肪组织(SAT)、内脏脂肪组织(VAT)、肌内脂肪组织(IMAT)、骨骼肌(SM)和骨骼。采用特定病因的Cox比例风险模型来评估风险比(HRs)。使用标准的时间依赖性受试者工作特征(ROC)分析来评估不同模型随时间的预后能力。

结果

最终的综合模型由七个变量构成:年龄(HR = 1.20)、当前吸烟状态(HR = 1.59)、骨体积(HR = 1.79)、SM密度(HR = 0.29)、IMAT比例(HR = 0.33)、IMAT密度(HR = 0.56)和SAT体积(HR = 0.56)。在PLuSS队列上训练的模型在21年的随访期内预测PLuSS队列中肺癌发生的平均AUC为0.76(95% CI:0.74 - 0.79),在前7年的随访期内为0.70(95% CI:0.66 - 0.74)。相比之下,仅在PLuSS队列上训练的模型以及与NLST队列联合训练的模型在NLST队列7年的随访期内AUC范围为0.61至0.68。

结论

基于LDCT评估的身体成分是肺癌风险的重要预测指标,通过优化筛查资格和频率可提高LDCT肺癌筛查的有效性。

总结声明

基于LDCT评估的身体成分是肺癌风险的重要预测指标,通过优化筛查资格和频率可提高LDCT肺癌筛查的有效性。

关键点

本研究揭示了身体组织与肺癌风险之间的显著关联。仅基于身体成分以及人口统计学和身体成分特征相结合的预测模型能够有效识别肺癌发生风险较高的患者。

相似文献

10
Undernutrition as a risk factor for tuberculosis disease.营养不良是结核病的一个风险因素。
Cochrane Database Syst Rev. 2024 Jun 11;6(6):CD015890. doi: 10.1002/14651858.CD015890.pub2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验