染色体外DNA驱动的胶质母细胞瘤癌基因空间异质性与进化
Extrachromosomal DNA driven oncogene spatial heterogeneity and evolution in glioblastoma.
作者信息
Noorani Imran, Haughey Magnus, Luebeck Jens, Rowan Andrew, Grönroos Eva, Terenzi Francesco, Wong Ivy Tsz-Lo, Kittel Jeanette, Bailey Chris, Weeden Clare, Bell Donald, Joo Eric, Barbe Vittorio, Jones Matthew G, Nye Emma, Green Mary, Meader Lucy, Norton Emma Jane, Fabian Mark, Kanu Nnennaya, Jamal-Hanjani Mariam, Santarius Thomas, Nicoll James, Boche Delphine, Chang Howard Y, Bafna Vineet, Huang Weini, Mischel Paul S, Swanton Charles, Werner Benjamin
出版信息
bioRxiv. 2024 Oct 25:2024.10.22.619657. doi: 10.1101/2024.10.22.619657.
UNLABELLED
Oncogene amplification on extrachromosomal DNA (ecDNA) is strongly associated with treatment resistance and shorter survival for patients with cancer, including patients with glioblastoma. The non-chromosomal inheritance of ecDNA during cell division is a major contributor to intratumoral genetic heterogeneity. At present, the spatial dynamics of ecDNA, and the impact on tumor evolutionary trajectories, are not well understood. Here, we investigate the spatial-temporal evolution of ecDNA and its clinical impact by analyzing tumor samples from 94 treatment-naive human -wildtype glioblastoma patients. We developed a spatial-temporal computational model of ecDNA positive tumors ('SPECIES') that integrates whole-genome sequencing, multi-region DNA FISH, and nascent RNAscope, to provide unique insight into the spatial dynamics of ecDNA evolution. Random segregation in combination with positive selection of ecDNAs induce large, predictable spatial patterns of cell-to-cell ecDNA copy number variation that are highly dependent on the oncogene encoded on the circular DNA. ecDNAs often reach high mean copy number (mean of 50 copies per tumor cell), are under strong positive selection (mean selection coefficient, > 2) and do not co-amplify other oncogenes on the same ecDNA particles. In contrast, ecDNAs have lower mean copy number (mean of 15 copies per cell), are under weaker positive selection and frequently co-amplify other oncogenes on the same ecDNA. Evolutionary modeling suggests that ecDNAs often accumulate prior to clonal expansion. structural variants, including and c-terminal deletions are under strong positive selection, are found exclusively on ecDNA, and are intermixed with wild-type ecDNAs. Simulations show ecDNA likely arises after ecDNA formation in a cell with high wild-type copy number (> 10) before the onset of the most recent clonal expansion. This remains true even in cases of co-selection and co-amplification of multiple oncogenic ecDNA species in a subset of patients. Overall, our results suggest a potential time window in which early ecDNA detection may provide an opportunity for more effective intervention.
HIGHLIGHTS
ecDNA is the most common mechanism of focal oncogene amplification in wt glioblastoma. and its variants on ecDNA are particularly potent, likely arising early in tumor development, providing a strong oncogenic stimulus to drive tumorigenesis. Wild-type and variant ecDNA heteroplasmy (co-occurrence) is common with vIII or c-terminal deletions being derived from wild-type ecDNA prior to the most recent clonal expansion. Tumors with ecDNA amplified versus exhibit different evolutionary trajectories. SPECIES model can infer spatial evolutionary dynamics of ecDNA in cancer.A delay between ecDNA accumulation and subsequent oncogenic mutation may give a therapeutic window for early intervention.
未标注
染色体外DNA(ecDNA)上的癌基因扩增与癌症患者(包括胶质母细胞瘤患者)的治疗耐药性和较短生存期密切相关。ecDNA在细胞分裂过程中的非染色体遗传是肿瘤内遗传异质性的主要原因。目前,ecDNA的空间动态及其对肿瘤进化轨迹的影响尚不清楚。在这里,我们通过分析94例未经治疗的野生型人类胶质母细胞瘤患者的肿瘤样本,研究了ecDNA的时空演变及其临床影响。我们开发了一个ecDNA阳性肿瘤的时空计算模型(“SPECIES”),该模型整合了全基因组测序、多区域DNA荧光原位杂交和新生RNAscope,以提供对ecDNA进化空间动态的独特见解。ecDNA的随机分离与正向选择相结合,诱导了细胞间ecDNA拷贝数变异的大的、可预测的空间模式,这高度依赖于环状DNA上编码的癌基因。ecDNA通常达到高平均拷贝数(每个肿瘤细胞平均50个拷贝),处于强正向选择之下(平均选择系数,>2),并且不会在同一ecDNA颗粒上共同扩增其他癌基因。相比之下,ecDNA的平均拷贝数较低(每个细胞平均15个拷贝),正向选择较弱,并且经常在同一ecDNA上共同扩增其他癌基因。进化模型表明,ecDNA通常在克隆扩增之前积累。结构变异,包括和c端缺失,处于强正向选择之下,仅在ecDNA上发现,并与野生型ecDNA混合。模拟显示,ecDNA可能在最近一次克隆扩增开始之前,在具有高野生型拷贝数(>10)的细胞中ecDNA形成之后出现。即使在一部分患者中存在多种致癌ecDNA物种的共选择和共扩增的情况下,也是如此。总体而言,我们的结果表明存在一个潜在的时间窗口,在这个窗口内早期检测ecDNA可能为更有效的干预提供机会。
重点
ecDNA是野生型胶质母细胞瘤中局灶性癌基因扩增最常见的机制。ecDNA上的及其变体特别有效,可能在肿瘤发展早期出现,为驱动肿瘤发生提供强大的致癌刺激。野生型和变体ecDNA异质性(共现)很常见,vIII或c端缺失在最近一次克隆扩增之前源自野生型ecDNA。ecDNA扩增的肿瘤与扩增的肿瘤表现出不同的进化轨迹。SPECIES模型可以推断癌症中ecDNA的空间进化动态。ecDNA积累与随后的致癌突变之间的延迟可能为早期干预提供治疗窗口。
相似文献
2025-1
Psychopharmacol Bull. 2024-7-8
Nature. 2024-11
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2018-2-6