Crown Anthony M, Wu Annie H, Hofflander Lindsey, Barnea Gilad
Department of Neuroscience, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA.
bioRxiv. 2024 Oct 26:2024.10.24.620060. doi: 10.1101/2024.10.24.620060.
Navigating animals must integrate a diverse array of sensory cues into a single locomotor decision. Insects perform intricate navigational feats using a brain region termed the central complex in which an animal's heading direction is transformed through several layers of circuitry to elicit goal-directed locomotion. These transformations occur mostly in the fan-shaped body (FB), a major locus of multi-sensory integration in the central complex. Key aspects of these sensorimotor computations have been extensively characterized by functional studies, leveraging the genetic tools available in the fruit fly. However, our understanding of how neuronal activity in the FB dictates locomotor behaviors during navigation remains enigmatic. Here, we manipulate the activity of two key neuronal populations that input into the FB-the PFN and PFN neurons-used to encode the direction of two complex navigational cues: wind plumes and optic flow, respectively. We find that flies presented with unidirectional optic flow steer along curved walking trajectories, but silencing PFN neurons abolishes this curvature. We next use optogenetic activation to introduce a fictive heading signal in the PFNs to establish the causal relationship between their activity and steering behavior. Our studies reveal that the central complex guides locomotion by summing the PFN-borne directional signals and shifting movement trajectories left or right accordingly. Based on these results, we propose a model of central complex-mediated locomotion wherein the fly achieves fine-grained control of sensory-guided steering by continuously integrating its heading and goal directions over time.
导航动物必须将各种各样的感官线索整合到一个单一的运动决策中。昆虫利用一个称为中央复合体的脑区执行复杂的导航壮举,在这个脑区中,动物的头部方向通过几层神经回路进行转换,以引发目标导向的运动。这些转换大多发生在扇形身体(FB)中,它是中央复合体中多感官整合的主要场所。这些感觉运动计算的关键方面已经通过功能研究得到了广泛的表征,利用了果蝇中可用的遗传工具。然而,我们对FB中的神经元活动如何在导航过程中决定运动行为仍然知之甚少。在这里,我们操纵输入到FB的两个关键神经元群体——PFN和PFN神经元——的活动,它们分别用于编码两种复杂导航线索的方向:风羽流和光流。我们发现,呈现单向光流的果蝇会沿着弯曲的行走轨迹转向,但沉默PFN神经元会消除这种曲率。接下来,我们使用光遗传学激活在PFN中引入一个虚拟的头部信号,以建立它们的活动与转向行为之间的因果关系。我们的研究表明,中央复合体通过对PFN携带的方向信号进行求和并相应地向左或向右移动运动轨迹来引导运动。基于这些结果,我们提出了一个中央复合体介导运动的模型,其中果蝇通过随着时间的推移不断整合其头部和目标方向来实现对感官引导转向的精细控制。