Suppr超能文献

行走步幅直接快速灵活地招募视觉回路以控制果蝇的飞行路线。

Walking strides direct rapid and flexible recruitment of visual circuits for course control in Drosophila.

机构信息

Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal.

Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal.

出版信息

Neuron. 2022 Jul 6;110(13):2124-2138.e8. doi: 10.1016/j.neuron.2022.04.008. Epub 2022 May 6.

Abstract

Flexible mapping between activity in sensory systems and movement parameters is a hallmark of motor control. This flexibility depends on the continuous comparison of short-term postural dynamics and the longer-term goals of an animal, thereby necessitating neural mechanisms that can operate across multiple timescales. To understand how such body-brain interactions emerge across timescales to control movement, we performed whole-cell patch recordings from visual neurons involved in course control in Drosophila. We show that the activity of leg mechanosensory cells, propagating via specific ascending neurons, is critical for stride-by-stride steering adjustments driven by the visual circuit, and, at longer timescales, it provides information about the moving body's state to flexibly recruit the visual circuit for course control. Thus, our findings demonstrate the presence of an elegant stride-based mechanism operating at multiple timescales for context-dependent course control. We propose that this mechanism functions as a general basis for the adaptive control of locomotion.

摘要

感觉系统活动与运动参数之间的灵活映射是运动控制的一个标志。这种灵活性取决于对短期姿势动力学和动物长期目标的持续比较,从而需要能够在多个时间尺度上运行的神经机制。为了了解这种跨时间尺度的身体-大脑相互作用如何出现以控制运动,我们对参与果蝇航向控制的视觉神经元进行了全细胞贴附记录。我们表明,腿部机械感觉细胞的活动通过特定的上升神经元传播,对于由视觉电路驱动的逐拍转向调整至关重要,并且在更长的时间尺度上,它为移动身体的状态提供信息,以灵活地招募视觉电路进行航向控制。因此,我们的发现表明存在一种优雅的基于步幅的机制,可在多个时间尺度上进行上下文相关的航向控制。我们提出,这种机制是适应运动控制的一般基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e8/9275417/3211b6ced5da/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验