Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
Neuron. 2024 Aug 7;112(15):2581-2599.e23. doi: 10.1016/j.neuron.2024.04.036. Epub 2024 May 24.
Anchoring goals to spatial representations enables flexible navigation but is challenging in novel environments when both representations must be acquired simultaneously. We propose a framework for how Drosophila uses internal representations of head direction (HD) to build goal representations upon selective thermal reinforcement. We show that flies use stochastically generated fixations and directed saccades to express heading preferences in an operant visual learning paradigm and that HD neurons are required to modify these preferences based on reinforcement. We used a symmetric visual setting to expose how flies' HD and goal representations co-evolve and how the reliability of these interacting representations impacts behavior. Finally, we describe how rapid learning of new goal headings may rest on a behavioral policy whose parameters are flexible but whose form is genetically encoded in circuit architecture. Such evolutionarily structured architectures, which enable rapidly adaptive behavior driven by internal representations, may be relevant across species.
将目标与空间表示联系起来可以实现灵活的导航,但在新环境中,当必须同时获取这两种表示时,这将具有挑战性。我们提出了一个框架,说明果蝇如何利用头部方向(HD)的内部表示来建立基于选择性热强化的目标表示。我们表明,苍蝇使用随机产生的注视和定向扫视在操作性视觉学习范式中表达航向偏好,并且 HD 神经元需要根据强化来修改这些偏好。我们使用对称的视觉设置来揭示苍蝇的 HD 和目标表示是如何共同演变的,以及这些相互作用的表示的可靠性如何影响行为。最后,我们描述了苍蝇如何快速学习新的目标航向,这可能依赖于一种行为策略,其参数是灵活的,但形式是由电路结构中的遗传编码决定的。这种由内部表示驱动的快速自适应行为的进化结构可能在不同物种中具有相关性。