Suppr超能文献

一种真菌性脑膜炎病原体的表型图谱揭示了其独特生物学特性。

Phenotypic landscape of a fungal meningitis pathogen reveals its unique biology.

作者信息

Boucher Michael J, Banerjee Sanjita, Joshi Meenakshi B, Wei Angela L, Huang Manning Y, Lei Susan, Ciranni Massimiliano, Condon Andrew, Langen Andreas, Goddard Thomas D, Caradonna Ippolito, Goranov Alexi I, Homer Christina M, Mortensen Yassaman, Petnic Sarah, Reilly Morgann C, Xiong Ying, Susa Katherine J, Pastore Vito Paolo, Zaro Balyn W, Madhani Hiten D

机构信息

Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA.

Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, via alla Opera Pia 13, 16145 Genoa, Italy.

出版信息

bioRxiv. 2024 Oct 29:2024.10.22.619677. doi: 10.1101/2024.10.22.619677.

Abstract

is the most common cause of fungal meningitis and the top-ranked W.H.O. priority fungal pathogen. Only distantly related to model fungi, is also a powerful experimental system for exploring conserved eukaryotic mechanisms lost from specialist model yeast lineages. To decipher its biology globally, we constructed 4328 gene deletions and measured-with exceptional precision--the fitness of each mutant under 141 diverse growth-limiting conditions and during murine infection. We defined functional modules by clustering genes based on their phenotypic signatures. In-depth studies leveraged these data in two ways. First, we defined and investigated new components of key signaling pathways, which revealed animal-like pathways/components not predicted from studies of model yeasts. Second, we identified environmental adaptation mechanisms repurposed to promote mammalian virulence by , which lacks a known animal reservoir. Our work provides an unprecedented resource for deciphering a deadly human pathogen.

摘要

是真菌性脑膜炎最常见的病因,也是世界卫生组织列为首要重点的真菌病原体。它与模式真菌的亲缘关系较远,也是探索从专门的模式酵母谱系中丢失的保守真核机制的强大实验系统。为了全面解读其生物学特性,我们构建了4328个基因缺失突变体,并极其精确地测量了每个突变体在141种不同生长限制条件下以及在小鼠感染过程中的适应性。我们根据基因的表型特征对基因进行聚类,从而定义了功能模块。深入研究从两个方面利用了这些数据。首先,我们定义并研究了关键信号通路的新组分,这些组分揭示了模型酵母研究中未预测到的类似动物的通路/组分。其次,我们确定了被重新利用以促进其在哺乳动物中致病力的环境适应机制,而该病原体缺乏已知的动物宿主。我们的工作为解读一种致命的人类病原体提供了前所未有的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d6a/11526942/b5a9990d1795/nihpp-2024.10.22.619677v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验