Pinto-Anwandter Bernardo I
Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
bioRxiv. 2024 Oct 25:2024.10.22.619486. doi: 10.1101/2024.10.22.619486.
The generation and propagation of action potentials in neurons depend on the coordinated activation of voltage-dependent sodium and potassium channels. Potassium channels of the Shaker family regulate neuronal excitability through voltage-dependent opening and closing of their ion conduction pore. This family of channels is an important therapeutic target, particularly in multiple sclerosis where the inhibitor dalfampridine (4-aminopyridine) is used to improve nerve conduction. The molecular details of how the voltage sensor domain drives opening of the pore domain has been limited by the lack of closed-state structures, also impairing the search for novel drugs. Using AlphaFold2-based conformational sampling methods we identify a structural model for the closed Shaker potassium channel where movement of the voltage sensor drives the opening trough interactions between the S4-S5 linker and S6 helix. We show experimentally that breakage of a backbone hydrogen bond is a critical part of the activation pathway. Through docking we identify a hydrophobic cavity formed by the pore domain helices that binds dalfampridine in the closed state. Our results demonstrate how voltage sensor movement drives pore opening and provide a structural framework for developing new therapeutic agents targeting the closed state. We anticipate this work will enable structure-based drug design efforts focused on state-dependent modulation of voltage-gated ion channels for the treatment of neurological disorders.
神经元中动作电位的产生和传播取决于电压依赖性钠通道和钾通道的协同激活。Shaker家族的钾通道通过其离子传导孔的电压依赖性开放和关闭来调节神经元的兴奋性。该通道家族是一个重要的治疗靶点,特别是在多发性硬化症中,抑制剂达氟吡啶(4-氨基吡啶)被用于改善神经传导。由于缺乏关闭状态的结构,电压传感器结构域驱动孔结构域开放的分子细节受到限制,这也阻碍了新型药物的研发。使用基于AlphaFold2的构象采样方法,我们确定了关闭状态的Shaker钾通道的结构模型,其中电压传感器的移动通过S4-S5连接子和S6螺旋之间的相互作用驱动通道开放。我们通过实验表明,主链氢键的断裂是激活途径的关键部分。通过对接,我们确定了由孔结构域螺旋形成的一个疏水腔,该疏水腔在关闭状态下结合达氟吡啶。我们的结果展示了电压传感器的移动如何驱动孔的开放,并为开发针对关闭状态的新型治疗药物提供了一个结构框架。我们预计这项工作将使基于结构的药物设计努力聚焦于电压门控离子通道的状态依赖性调节,以治疗神经系统疾病。