Suppr超能文献

孔道结构域与电压感受器结构域之间的耦合运动:一种电压门控钾通道——Shaker B的模型

Coupled motions between pore and voltage-sensor domains: a model for Shaker B, a voltage-gated potassium channel.

作者信息

Treptow Werner, Maigret Bernard, Chipot Christophe, Tarek Mounir

机构信息

Equipe de Dynamique des Assemblages Membranaires, Unité Mixte de Recherche, Centre National de la Recherche Scientifique/Université Henri Poincaré 7565, Nancy, France.

出版信息

Biophys J. 2004 Oct;87(4):2365-79. doi: 10.1529/biophysj.104.039628.

Abstract

A high-resolution crystal structure of KvAP, an archeabacterial voltage-gated potassium (Kv) channel, complexed with a monoclonal Fab fragment has been recently determined. Based on this structure, a mechanism for the activation (opening) of Kv channels has been put forward. This mechanism has since been criticized, suggesting that the resolved structure is not representative of the family of voltage-gated potassium channels. Here, we propose a model of the transmembrane domain of Shaker B, a well-characterized Kv channel, built by homology modeling and docking calculations. In this model, the positively charged S4 helices are oriented perpendicular to the membrane and localized in the groove between segments S5 and S6 of adjacent subunits. The structure and the dynamics of the full atomistic model embedded in a hydrated lipid bilayer were investigated by means of two large-scale molecular dynamics simulations under transmembrane-voltage conditions known to induce, respectively, the resting state (closed) and the activation (opening) of voltage-gated channels. Upon activation, the model undergoes conformational changes that lead to an increase of the hydration of the charged S4 helices, correlated with an upward translation and a tilting of the latter, concurrently with movements of the S5 helices and the activation gate. Although small, these conformational changes ultimately result in an alteration of the ion-conduction pathway. Our findings support the transporter model devised by Bezanilla and collaborators, and further underline the crucial role played by internal hydration in the activation of the channel.

摘要

一种古细菌电压门控钾(Kv)通道KvAP与单克隆Fab片段复合的高分辨率晶体结构最近已被确定。基于此结构,提出了一种Kv通道激活(开放)的机制。此后,该机制受到了批评,有人认为解析出的结构并不代表电压门控钾通道家族。在此,我们提出了一个经过充分表征的Kv通道Shaker B跨膜结构域的模型,该模型通过同源建模和对接计算构建。在这个模型中,带正电的S4螺旋垂直于膜定向,并定位在相邻亚基的S5和S6片段之间的凹槽中。通过两个大规模分子动力学模拟,在已知分别诱导电压门控通道静息状态(关闭)和激活(开放)的跨膜电压条件下,研究了嵌入水合脂质双层中的全原子模型的结构和动力学。激活后,该模型发生构象变化,导致带电荷的S4螺旋的水合作用增加,这与后者的向上平移和倾斜相关,同时伴随着S5螺旋和激活门的移动。尽管这些构象变化很小,但最终会导致离子传导途径的改变。我们的研究结果支持了Bezanilla及其合作者提出的转运体模型,并进一步强调了内部水合作用在通道激活中所起的关键作用。

相似文献

2
KvAP-based model of the pore region of shaker potassium channel is consistent with cadmium- and ligand-binding experiments.
Biophys J. 2005 Aug;89(2):1020-9. doi: 10.1529/biophysj.105.062240. Epub 2005 May 20.
3
Models of the structure and voltage-gating mechanism of the shaker K+ channel.
Biophys J. 2004 Oct;87(4):2116-30. doi: 10.1529/biophysj.104.040618.
4
Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel.
Biochim Biophys Acta. 2012 Jul;1818(7):1726-36. doi: 10.1016/j.bbamem.2012.02.029.
5
A model of voltage gating developed using the KvAP channel crystal structure.
Biophys J. 2004 Oct;87(4):2255-70. doi: 10.1529/biophysj.104.040592.
6
Gating motions in voltage-gated potassium channels revealed by coarse-grained molecular dynamics simulations.
J Phys Chem B. 2008 Mar 20;112(11):3277-82. doi: 10.1021/jp709675e. Epub 2008 Feb 23.
8
Coupling between voltage sensors and activation gate in voltage-gated K+ channels.
J Gen Physiol. 2002 Nov;120(5):663-76. doi: 10.1085/jgp.20028696.
9
Electrostatic model of S4 motion in voltage-gated ion channels.
Biophys J. 2003 Nov;85(5):2854-64. doi: 10.1016/S0006-3495(03)74708-0.
10
Molecular compatibility of the channel gate and the N terminus of S5 segment for voltage-gated channel activity.
J Biol Chem. 2005 May 6;280(18):18253-64. doi: 10.1074/jbc.M413389200. Epub 2005 Mar 4.

引用本文的文献

1
The voltage-sensing domain of a hERG1 mutant is a cation-selective channel.
Biophys J. 2022 Dec 6;121(23):4585-4599. doi: 10.1016/j.bpj.2022.10.032. Epub 2022 Oct 29.
2
Computational Insights Into Voltage Dependence of Polyamine Block in a Strong Inwardly Rectifying K Channel.
Front Pharmacol. 2020 May 15;11:721. doi: 10.3389/fphar.2020.00721. eCollection 2020.
4
Modeling and simulation of ion channels.
Chem Rev. 2012 Dec 12;112(12):6250-84. doi: 10.1021/cr3002609. Epub 2012 Oct 4.
5
Molecular dynamics simulations of voltage-gated cation channels: insights on voltage-sensor domain function and modulation.
Front Pharmacol. 2012 May 25;3:97. doi: 10.3389/fphar.2012.00097. eCollection 2012.
6
Molecular dynamics simulations of lipid membrane electroporation.
J Membr Biol. 2012 Sep;245(9):531-43. doi: 10.1007/s00232-012-9434-6. Epub 2012 May 30.
7
Constant electric field simulations of the membrane potential illustrated with simple systems.
Biochim Biophys Acta. 2012 Feb;1818(2):294-302. doi: 10.1016/j.bbamem.2011.09.030. Epub 2011 Oct 5.
9
Potassium channel opening: a subtle two-step.
J Physiol. 2009 Aug 1;587(Pt 15):3851-68. doi: 10.1113/jphysiol.2009.174730. Epub 2009 Jun 15.
10
Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel.
PLoS Comput Biol. 2009 Feb;5(2):e1000289. doi: 10.1371/journal.pcbi.1000289. Epub 2009 Feb 20.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Intracellular gate opening in Shaker K+ channels defined by high-affinity metal bridges.
Nature. 2004 Apr 22;428(6985):864-8. doi: 10.1038/nature02468.
3
Specificity of charge-carrying residues in the voltage sensor of potassium channels.
J Gen Physiol. 2004 Mar;123(3):205-16. doi: 10.1085/jgp.200308993. Epub 2004 Feb 9.
4
A proton pore in a potassium channel voltage sensor reveals a focused electric field.
Nature. 2004 Feb 5;427(6974):548-53. doi: 10.1038/nature02270.
5
Ion channels: shake, rattle or roll?
Nature. 2004 Feb 5;427(6974):499-500. doi: 10.1038/427499a.
6
Changes in local S4 environment provide a voltage-sensing mechanism for mammalian hyperpolarization-activated HCN channels.
J Gen Physiol. 2004 Jan;123(1):5-19. doi: 10.1085/jgp.200308918. Epub 2003 Dec 15.
8
The orientation and molecular movement of a k(+) channel voltage-sensing domain.
Neuron. 2003 Oct 30;40(3):515-25. doi: 10.1016/s0896-6273(03)00646-9.
9
Ion channel gating: insights via molecular simulations.
FEBS Lett. 2003 Nov 27;555(1):85-90. doi: 10.1016/s0014-5793(03)01151-7.
10
Molecular movement of the voltage sensor in a K channel.
J Gen Physiol. 2003 Dec;122(6):741-8. doi: 10.1085/jgp.200308927. Epub 2003 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验