Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy.
Istituto di Scienze e Tecnologie per l'Energia e la Mobilita Sostenibili- CNR - P.le V. Tecchio, Napoli, Italy.
Nanotoxicology. 2024 Nov;18(7):618-644. doi: 10.1080/17435390.2024.2419418. Epub 2024 Nov 1.
Carbon nanomaterials have been widely applied for cutting edge therapeutic applications as they offer tunable physio-chemical properties with economic scale-up options. Nuclear delivery of cancer drugs has been of prime focus since it controls important cellular signaling functions leading to greater anti-cancer drug efficacies. Better cellular drug uptake per unit drug injection drastically reduces severe side-effects of cancer therapies. Similarly, carbon dots (CDs) uptaken by the nucleus can also be used to set-up cutting edge nano delivery systems. In an earlier paper, we showed the cellular uptake and plasma membrane impact of combustion generated yellow luminescing CDs produced by our group from fuel rich combustion reactors in a one-step tunable production. In this paper, we aim to specifically study the nucleus by establishing the uptake kinetics of these combustion-generated yellow luminescing CDs. At sub-lethal doses, after crossing the plasma membrane, they impact the actin and microtubule mesh, affecting cell adhesion and migration; enter nucleus by diffusion processes; modify the overall appearance of the nucleus in terms of morphology; and alter chromatin condensation. We thus establish how this one-step produced, cost and bulk production friendly carbon dots from fuel rich combustion flames can be innovatively repurposed as potential nano delivery agents in cancer cells.
碳纳米材料由于具有可调节的物理化学性质和经济的规模化选择,因此被广泛应用于前沿治疗应用。由于核内药物输送可以控制重要的细胞信号功能,从而提高抗癌药物的疗效,因此一直是研究的重点。单位药物注射的细胞内药物摄取量增加,可以大大减少癌症治疗的严重副作用。同样,被细胞核吸收的碳点(CD)也可以用于建立前沿的纳米输送系统。在之前的一篇论文中,我们展示了我们小组从富燃料燃烧反应器一步法可调生产中产生的黄色发光燃烧 CD 的细胞摄取和质膜影响。在本文中,我们旨在通过建立这些燃烧产生的黄色发光 CD 的摄取动力学,专门研究细胞核。在亚致死剂量下,穿过质膜后,它们会影响肌动蛋白和微管网,影响细胞黏附和迁移;通过扩散过程进入细胞核;改变细胞核的整体形态;并改变染色质的凝聚。因此,我们确定了如何将这种一步法生产的、成本低廉且适合大规模生产的富燃料燃烧火焰碳点,创新性地重新用作癌细胞中的潜在纳米输送剂。