Suppr超能文献

通过可解释的分层几何深度学习进行蛋白质-蛋白质和蛋白质-核酸结合位点预测。

Protein-protein and protein-nucleic acid binding site prediction via interpretable hierarchical geometric deep learning.

机构信息

School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China.

出版信息

Gigascience. 2024 Jan 2;13. doi: 10.1093/gigascience/giae080.

Abstract

Identification of protein-protein and protein-nucleic acid binding sites provides insights into biological processes related to protein functions and technical guidance for disease diagnosis and drug design. However, accurate predictions by computational approaches remain highly challenging due to the limited knowledge of residue binding patterns. The binding pattern of a residue should be characterized by the spatial distribution of its neighboring residues combined with their physicochemical information interaction, which yet cannot be achieved by previous methods. Here, we design GraphRBF, a hierarchical geometric deep learning model to learn residue binding patterns from big data. To achieve it, GraphRBF describes physicochemical information interactions by designing an enhanced graph neural network and characterizes residue spatial distributions by introducing a prioritized radial basis function neural network. After training and testing, GraphRBF shows great improvements over existing state-of-the-art methods and strong interpretability of its learned representations. Applying GraphRBF to the SARS-CoV-2 omicron spike protein, it successfully identifies known epitopes of the protein. Moreover, it predicts multiple potential binding regions for new nanobodies or even new drugs with strong evidence. A user-friendly online server for GraphRBF is freely available at http://liulab.top/GraphRBF/server.

摘要

蛋白质-蛋白质和蛋白质-核酸结合位点的鉴定为研究与蛋白质功能相关的生物过程提供了深入的了解,并为疾病诊断和药物设计提供了技术指导。然而,由于残基结合模式的知识有限,计算方法的准确预测仍然极具挑战性。残基的结合模式应该由其相邻残基的空间分布以及它们的物理化学信息相互作用来描述,而这是以前的方法无法实现的。在这里,我们设计了 GraphRBF,这是一种分层的几何深度学习模型,用于从大数据中学习残基结合模式。为了实现这一目标,GraphRBF 通过设计增强型图神经网络来描述物理化学信息相互作用,并通过引入优先级径向基函数神经网络来描述残基的空间分布。经过训练和测试,GraphRBF 相较于现有最先进的方法有了很大的改进,并且其学习的表示具有很强的可解释性。将 GraphRBF 应用于 SARS-CoV-2 的奥密克戎刺突蛋白,它成功地识别了该蛋白的已知表位。此外,它还预测了多个潜在的结合区域,这些区域可用于新的纳米抗体甚至新的药物,且有很强的证据支持。GraphRBF 的用户友好型在线服务器可在 http://liulab.top/GraphRBF/server 免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11ee/11528319/416515e64e36/giae080fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验