School of Mathematics and Statistics, Shandong University, Weihai 264209, China.
School of Mathematics, Shandong University, Jinan 250100, China.
Brief Bioinform. 2023 Sep 22;24(6). doi: 10.1093/bib/bbad345.
Accurate identification of protein-protein interaction (PPI) sites remains a computational challenge. We propose Spatom, a novel framework for PPI site prediction. This framework first defines a weighted digraph for a protein structure to precisely characterize the spatial contacts of residues, then performs a weighted digraph convolution to aggregate both spatial local and global information and finally adds an improved graph attention layer to drive the predicted sites to form more continuous region(s). Spatom was tested on a diverse set of challenging protein-protein complexes and demonstrated the best performance among all the compared methods. Furthermore, when tested on multiple popular proteins in a case study, Spatom clearly identifies the interaction interfaces and captures the majority of hotspots. Spatom is expected to contribute to the understanding of protein interactions and drug designs targeting protein binding.
准确识别蛋白质-蛋白质相互作用(PPI)位点仍然是一个计算挑战。我们提出了 Spatom,这是一种用于 PPI 位点预测的新框架。该框架首先为蛋白质结构定义一个加权有向图,以精确描述残基的空间接触,然后执行加权有向图卷积,以聚合空间局部和全局信息,最后添加改进的图注意力层,以驱动预测的位点形成更连续的区域。Spatom 在一组多样化的具有挑战性的蛋白质-蛋白质复合物上进行了测试,在所有比较方法中表现出最佳性能。此外,在案例研究中对多个流行蛋白质进行测试时,Spatom 清楚地识别了相互作用界面,并捕获了大多数热点。Spatom 有望有助于理解蛋白质相互作用和针对蛋白质结合的药物设计。