Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan.
Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8563, Japan.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae175.
Microbial rhodopsins are prevalent in many cyanobacterial groups as a light-energy-harvesting system in addition to the photosynthetic system. It has been suggested that this dual system allows efficient capture of sunlight energy using complementary ranges of absorption wavelengths. However, the diversity of cyanobacterial rhodopsins, particularly in accumulated metagenomic data, remains underexplored. Here, we used a metagenomic mining approach, which led to the identification of a novel rhodopsin clade unique to cyanobacteria, cyanorhodopsin-II (CyR-II). CyR-IIs function as light-driven outward H+ pumps. CyR-IIs, together with previously identified cyanorhodopsins (CyRs) and cyanobacterial halorhodopsins (CyHRs), constitute cyanobacterial ion-pumping rhodopsins (CyipRs), a phylogenetically distinct family of rhodopsins. The CyR-II clade is further divided into two subclades, YCyR-II and GCyR-II, based on their specific absorption wavelength. YCyR-II absorbed yellow light (λmax = 570 nm), whereas GCyR-II absorbed green light (λmax = 550 nm). X-ray crystallography and mutational analysis revealed that the difference in absorption wavelengths is attributable to slight changes in the side chain structure near the retinal chromophore. The evolutionary trajectory of cyanobacterial rhodopsins suggests that the function and light-absorbing range of these rhodopsins have been adapted to a wide range of habitats with variable light and environmental conditions. Collectively, these findings shed light on the importance of rhodopsins in the evolution and environmental adaptation of cyanobacteria.
微生物视紫红质在许多蓝藻群体中很常见,是一种除光合作用系统外的光能量收集系统。有人认为,这种双系统允许使用互补的吸收波长范围来有效地捕获太阳光能量。然而,蓝藻视紫红质的多样性,特别是在积累的宏基因组数据中,仍然没有得到充分探索。在这里,我们使用了一种宏基因组挖掘方法,该方法导致了一种新型的蓝藻视紫红质独特的视紫红质-clade 的鉴定,即蓝藻视紫红质-II(CyR-II)。CyR-IIs 作为光驱动的外向 H+泵起作用。CyR-IIs 与先前鉴定的蓝藻视紫红质(CyRs)和蓝藻卤化视紫红质(CyHRs)一起构成了蓝藻离子泵视紫红质(CyipRs),这是一个在系统发育上不同的视紫红质家族。基于其特定的吸收波长,CyR-II 支系进一步分为两个亚支系,YCyR-II 和 GCyR-II。YCyR-II 吸收黄光(λmax=570nm),而 GCyR-II 吸收绿光(λmax=550nm)。X 射线晶体学和突变分析表明,吸收波长的差异归因于视黄醛附近侧链结构的微小变化。蓝藻视紫红质的进化轨迹表明,这些视紫红质的功能和光吸收范围已经适应了具有不同光照和环境条件的广泛栖息地。总的来说,这些发现揭示了视紫红质在蓝藻的进化和环境适应中的重要性。