Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.
Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga, 840-8502, Japan.
Sci Rep. 2019 Jul 24;9(1):10711. doi: 10.1038/s41598-019-47178-5.
Many microbial rhodopsins self-oligomerize, but the functional consequences of oligomerization have not been well clarified. We examined the effects of oligomerization of a H pump, Gloeobacter rhodopsin (GR), by using nanodisc containing trimeric and monomeric GR. The monomerization did not appear to affect the unphotolyzed GR. However, we found a significant impact on the photoreaction: The monomeric GR showed faint M intermediate formation and negligible H transfer reactions. These changes reflected the elevated pKa of the Asp121 residue, whose deprotonation is a prerequisite for the functional photoreaction. Here, we focused on His87, which is a neighboring residue of Asp121 and conserved among eubacterial H pumps but replaced by Met in an archaeal H pump. We found that the H87M mutation removes the "monomerization effects": Even in the monomeric state, H87M contained the deprotonated Asp121 and showed both M formation and distinct H transfer reactions. Thus, for wild-type GR, monomerization probably strengthens the Asp121-His87 interaction and thereby elevates the pKa of Asp121 residue. This strong interaction might occur due to the loosened protein structure and/or the disruption of the interprotomer interaction of His87. Thus, the trimeric assembly of GR enables light-induced H transfer reactions through adjusting the positions of key residues.
许多微生物视紫红质会自我寡聚化,但寡聚化的功能后果尚未得到很好的阐明。我们使用含有三聚体和单体 GR 的纳米盘研究了 H 泵,即绿硫菌视紫红质(GR)寡聚化的影响。单体化似乎不会影响未光解的 GR。然而,我们发现它对光反应有显著影响:单体 GR 显示出微弱的 M 中间产物形成和可忽略不计的 H 转移反应。这些变化反映了 Asp121 残基的 pKa 升高,该残基的去质子化是功能性光反应的前提。在这里,我们专注于 His87,它是 Asp121 的相邻残基,在真细菌 H 泵中保守,但在古细菌 H 泵中被 Met 取代。我们发现 H87M 突变消除了“单体化效应”:即使在单体状态下,H87M 也包含去质子化的 Asp121,并且显示出 M 形成和明显的 H 转移反应。因此,对于野生型 GR,单体化可能增强了 Asp121-His87 相互作用,从而提高了 Asp121 残基的 pKa。这种强相互作用可能是由于蛋白质结构的松弛和/或 His87 之间的互变异构体相互作用的破坏。因此,GR 的三聚体组装通过调整关键残基的位置来实现光诱导的 H 转移反应。