Suppr超能文献

分数驱动的指数随机图:一种用于时间网络的新型时变参数模型。

Score-driven exponential random graphs: A new class of time-varying parameter models for temporal networks.

作者信息

Di Gangi D, Bormetti G, Lillo F

机构信息

Domotz, via U. Forti 1, 56121 Pisa, Italy.

Department of Economics and Management, University of Pavia, Via San Felice al Monastero 5, 27100 Pavia, Italy.

出版信息

Chaos. 2024 Nov 1;34(11). doi: 10.1063/5.0222079.

Abstract

Motivated by the increasing abundance of data describing real-world networks that exhibit dynamical features, we propose an extension of the exponential random graph models (ERGMs) that accommodates the time variation of its parameters. Inspired by the fast-growing literature on dynamic conditional score models, each parameter evolves according to an updating rule driven by the score of the ERGM distribution. We demonstrate the flexibility of score-driven ERGMs (SD-ERGMs) as data-generating processes and filters and show the advantages of the dynamic version over the static one. We discuss two applications to temporal networks from financial and political systems. First, we consider the prediction of future links in the Italian interbank credit network. Second, we show that the SD-ERGM allows discriminating between static or time-varying parameters when used to model the U.S. Congress co-voting network dynamics.

摘要

鉴于描述具有动态特征的现实世界网络的数据日益丰富,我们提出了指数随机图模型(ERGM)的一种扩展,该扩展能够适应其参数的时间变化。受动态条件得分模型快速增长的文献启发,每个参数根据由ERGM分布得分驱动的更新规则进行演化。我们展示了得分驱动的ERGM(SD - ERGM)作为数据生成过程和过滤器的灵活性,并展示了动态版本相对于静态版本的优势。我们讨论了在金融和政治系统的时间网络中的两个应用。首先,我们考虑意大利银行间信贷网络中未来链接的预测。其次,我们表明,当用于对美国国会共同投票网络动态进行建模时,SD - ERGM能够区分静态参数和随时间变化的参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验