Suppr超能文献

一种用于改进动态网络模型拟合的近似方法。

An approximation method for improving dynamic network model fitting.

作者信息

Carnegie Nicole Bohme, Krivitsky Pavel N, Hunter David R, Goodreau Steven M

机构信息

Harvard School of Public Health.

University of Wollongong.

出版信息

J Comput Graph Stat. 2015;24(2):502-519. doi: 10.1080/10618600.2014.903087.

Abstract

There has been a great deal of interest recently in the modeling and simulation of dynamic networks, i.e., networks that change over time. One promising model is the separable temporal exponential-family random graph model (ERGM) of Krivitsky and Handcock, which treats the formation and dissolution of ties in parallel at each time step as independent ERGMs. However, the computational cost of fitting these models can be substantial, particularly for large, sparse networks. Fitting cross-sectional models for observations of a network at a single point in time, while still a non-negligible computational burden, is much easier. This paper examines model fitting when the available data consist of independent measures of cross-sectional network structure and the duration of relationships under the assumption of stationarity. We introduce a simple approximation to the dynamic parameters for sparse networks with relationships of moderate or long duration and show that the approximation method works best in precisely those cases where parameter estimation is most likely to fail-networks with very little change at each time step. We consider a variety of cases: Bernoulli formation and dissolution of ties, independent-tie formation and Bernoulli dissolution, independent-tie formation and dissolution, and dependent-tie formation models.

摘要

最近,人们对动态网络的建模和模拟产生了浓厚兴趣,即随时间变化的网络。一种很有前景的模型是克里维茨基和汉德科克提出的可分离时间指数族随机图模型(ERGM),该模型在每个时间步将关系的形成和消解并行处理为独立的ERGM。然而,拟合这些模型的计算成本可能很高,特别是对于大型稀疏网络。拟合网络在单个时间点的观测的横截面模型,虽然计算负担仍然不可忽视,但要容易得多。本文研究在平稳性假设下,当可用数据由横截面网络结构的独立度量和关系持续时间组成时的模型拟合。我们为具有中等或长时间关系的稀疏网络引入了一种对动态参数的简单近似,并表明该近似方法在参数估计最有可能失败的那些情况下效果最佳,即每个时间步变化很小的网络。我们考虑了多种情况:关系的伯努利形成和消解、独立关系形成和伯努利消解、独立关系形成和消解以及相关关系形成模型。

相似文献

1
An approximation method for improving dynamic network model fitting.
J Comput Graph Stat. 2015;24(2):502-519. doi: 10.1080/10618600.2014.903087.
2
Improving and Extending STERGM Approximations Based on Cross-Sectional Data and Tie Durations.
J Comput Graph Stat. 2024;33(1):166-180. doi: 10.1080/10618600.2023.2233593. Epub 2023 Aug 29.
3
A Separable Model for Dynamic Networks.
J R Stat Soc Series B Stat Methodol. 2014 Jan 1;76(1):29-46. doi: 10.1111/rssb.12014.
4
Improving Simulation-Based Algorithms for Fitting ERGMs.
J Comput Graph Stat. 2012 Dec 13;21(4):920-939. doi: 10.1080/10618600.2012.679224.
5
Fitting ERGMs on big networks.
Soc Sci Res. 2016 Sep;59:107-119. doi: 10.1016/j.ssresearch.2016.04.019. Epub 2016 Apr 27.
6
Highly scalable maximum likelihood and conjugate Bayesian inference for ERGMs on graph sets with equivalent vertices.
PLoS One. 2022 Aug 26;17(8):e0273039. doi: 10.1371/journal.pone.0273039. eCollection 2022.
7
Practical Network Modeling via Tapered Exponential-family Random Graph Models.
J Comput Graph Stat. 2023;32(2):388-401. doi: 10.1080/10618600.2022.2116444. Epub 2022 Oct 11.
8
ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks.
J Stat Softw. 2008 May 1;24(3):nihpa54860. doi: 10.18637/jss.v024.i03.
9
Exponential random graph model parameter estimation for very large directed networks.
PLoS One. 2020 Jan 24;15(1):e0227804. doi: 10.1371/journal.pone.0227804. eCollection 2020.
10
Specification of Exponential-Family Random Graph Models: Terms and Computational Aspects.
J Stat Softw. 2008;24(4):1548-7660. doi: 10.18637/jss.v024.i04.

引用本文的文献

2
Both Environmental Conditions and Intra- and Interspecific Interactions Influence the Movements of a Marine Predator.
Ecol Evol. 2024 Nov 28;14(12):e70659. doi: 10.1002/ece3.70659. eCollection 2024 Dec.
3
Continuous Time Graph Processes with Known ERGM Equilibria: Contextual Review, Extensions, and Synthesis.
J Math Sociol. 2024;48(2):129-171. doi: 10.1080/0022250x.2023.2180001. Epub 2023 Feb 27.
4
Improving and Extending STERGM Approximations Based on Cross-Sectional Data and Tie Durations.
J Comput Graph Stat. 2024;33(1):166-180. doi: 10.1080/10618600.2023.2233593. Epub 2023 Aug 29.
6
EpiModel: An R Package for Mathematical Modeling of Infectious Disease over Networks.
J Stat Softw. 2018 Apr;84. doi: 10.18637/jss.v084.i08. Epub 2018 Apr 20.

本文引用的文献

1
Improving Simulation-Based Algorithms for Fitting ERGMs.
J Comput Graph Stat. 2012 Dec 13;21(4):920-939. doi: 10.1080/10618600.2012.679224.
2
A Separable Model for Dynamic Networks.
J R Stat Soc Series B Stat Methodol. 2014 Jan 1;76(1):29-46. doi: 10.1111/rssb.12014.
3
What drives the US and Peruvian HIV epidemics in men who have sex with men (MSM)?
PLoS One. 2012;7(11):e50522. doi: 10.1371/journal.pone.0050522. Epub 2012 Nov 29.
4
Estimated HIV incidence in the United States, 2006-2009.
PLoS One. 2011;6(8):e17502. doi: 10.1371/journal.pone.0017502. Epub 2011 Aug 3.
5
Adjusting for Network Size and Composition Effects in Exponential-Family Random Graph Models.
Stat Methodol. 2011 Jul;8(4):319-339. doi: 10.1016/j.stamet.2011.01.005.
6
Concurrent partnerships, acute infection and HIV epidemic dynamics among young adults in Zimbabwe.
AIDS Behav. 2012 Feb;16(2):312-22. doi: 10.1007/s10461-010-9858-x.
7
Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21544-9. doi: 10.1073/pnas.0908800106. Epub 2009 Dec 10.
8
Dynamics of adolescent friendship networks and smoking behavior: social network analyses in six European countries.
Soc Sci Med. 2009 Nov;69(10):1506-14. doi: 10.1016/j.socscimed.2009.08.003. Epub 2009 Sep 21.
9
ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks.
J Stat Softw. 2008 May 1;24(3):nihpa54860. doi: 10.18637/jss.v024.i03.
10
Concurrent partnerships and HIV prevalence disparities by race: linking science and public health practice.
Am J Public Health. 2009 Jun;99(6):1023-31. doi: 10.2105/AJPH.2008.147835. Epub 2009 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验