Carnegie Nicole Bohme, Krivitsky Pavel N, Hunter David R, Goodreau Steven M
Harvard School of Public Health.
University of Wollongong.
J Comput Graph Stat. 2015;24(2):502-519. doi: 10.1080/10618600.2014.903087.
There has been a great deal of interest recently in the modeling and simulation of dynamic networks, i.e., networks that change over time. One promising model is the separable temporal exponential-family random graph model (ERGM) of Krivitsky and Handcock, which treats the formation and dissolution of ties in parallel at each time step as independent ERGMs. However, the computational cost of fitting these models can be substantial, particularly for large, sparse networks. Fitting cross-sectional models for observations of a network at a single point in time, while still a non-negligible computational burden, is much easier. This paper examines model fitting when the available data consist of independent measures of cross-sectional network structure and the duration of relationships under the assumption of stationarity. We introduce a simple approximation to the dynamic parameters for sparse networks with relationships of moderate or long duration and show that the approximation method works best in precisely those cases where parameter estimation is most likely to fail-networks with very little change at each time step. We consider a variety of cases: Bernoulli formation and dissolution of ties, independent-tie formation and Bernoulli dissolution, independent-tie formation and dissolution, and dependent-tie formation models.
最近,人们对动态网络的建模和模拟产生了浓厚兴趣,即随时间变化的网络。一种很有前景的模型是克里维茨基和汉德科克提出的可分离时间指数族随机图模型(ERGM),该模型在每个时间步将关系的形成和消解并行处理为独立的ERGM。然而,拟合这些模型的计算成本可能很高,特别是对于大型稀疏网络。拟合网络在单个时间点的观测的横截面模型,虽然计算负担仍然不可忽视,但要容易得多。本文研究在平稳性假设下,当可用数据由横截面网络结构的独立度量和关系持续时间组成时的模型拟合。我们为具有中等或长时间关系的稀疏网络引入了一种对动态参数的简单近似,并表明该近似方法在参数估计最有可能失败的那些情况下效果最佳,即每个时间步变化很小的网络。我们考虑了多种情况:关系的伯努利形成和消解、独立关系形成和伯努利消解、独立关系形成和消解以及相关关系形成模型。