Suppr超能文献

定量跨读结构-性质关系(q-RASPR):一种估算水生生物中各类工业化学品生物累积潜力的新方法。

Quantitative read-across structure-property relationship (q-RASPR): a novel approach to estimate the bioaccumulative potential for diverse classes of industrial chemicals in aquatic organisms.

作者信息

Bhattacharyya Prodipta, Samanta Pabitra, Kumar Ankur, Das Shubha, Ojha Probir Kumar

机构信息

Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.

出版信息

Environ Sci Process Impacts. 2025 Jan 22;27(1):76-90. doi: 10.1039/d4em00374h.

Abstract

The Bioconcentration Factor (BCF) is used to evaluate the bioaccumulation potential of chemical substances in reference organisms, and it directly correlates with ecotoxicity. Traditional BCF estimation methods are costly, time-consuming, and involve animal sacrifice. Many technologies are used to avoid the problems associated with testing. This study aims to develop a quantitative read across structure-property relationship (q-RASPR) model using a structurally diverse dataset consisting of 1303 compounds by combining quantitative structure-property relationship (QSPR) and read-across (RA) algorithms. The model incorporates simple, interpretable, and reproducible 2D molecular descriptors along with RASAR descriptors. The PLS-based q-RASPR model demonstrated robust performance with internal validation metrics ( = 0.727 and = 0.723) and external validation metrics ( = 0.739, = 0.739, and CCC = 0.858). These results indicate that the q-RASPR model is statistically superior to the corresponding QSPR model. Furthermore, screening of 1694 compounds from the Pesticide Properties Database (PPDB) was performed using the PLS-based q-RASPR model for assessing the eco-toxicological bioaccumulative potential of various compounds, ensuring the external predictability of the developed model and confirming the real-world application of the developed model. This model offers a reliable tool for predicting the BCF of new or untested compounds, thereby helping to develop safe and environment-friendly chemicals.

摘要

生物富集因子(BCF)用于评估参考生物体内化学物质的生物累积潜力,并且它与生态毒性直接相关。传统的BCF估算方法成本高、耗时且涉及动物牺牲。许多技术被用于避免与测试相关的问题。本研究旨在通过结合定量结构-性质关系(QSPR)和类推法(RA)算法,使用由1303种化合物组成的结构多样的数据集开发一种定量类推结构-性质关系(q-RASPR)模型。该模型纳入了简单、可解释且可重现的二维分子描述符以及RASAR描述符。基于偏最小二乘法(PLS)的q-RASPR模型在内部验证指标( = 0.727和 = 0.723)和外部验证指标( = 0.739、 = 0.739和CCC = 0.858)方面表现出稳健的性能。这些结果表明,q-RASPR模型在统计学上优于相应的QSPR模型。此外,使用基于PLS的q-RASPR模型对农药属性数据库(PPDB)中的1694种化合物进行了筛选,以评估各种化合物的生态毒理学生物累积潜力,确保所开发模型的外部可预测性并确认所开发模型在实际中的应用。该模型为预测新的或未测试化合物的BCF提供了一个可靠的工具,从而有助于开发安全且环境友好的化学品。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验