Chang Chia Ming, Banerjee Arkaprava, Kumar Vinay, Roy Kunal, Benfenati Emilio
Environmental Molecular and Electromagnetic Physics Laboratory, Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
Sci Rep. 2025 Jan 8;15(1):1344. doi: 10.1038/s41598-024-84778-2.
This study presents a quantitative read-across structure-property relationship (q-RASPR) approach that integrates the chemical similarity information used in read-across with traditional quantitative structure-property relationship (QSPR) models. This novel framework is applied to predict the physicochemical properties and environmental behaviors of persistent organic pollutants, specifically polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). By utilizing a curated dataset and incorporating similarity-based descriptors, the q-RASPR approach improves the accuracy of predictions, particularly for compounds with limited experimental data. The models' performances were assessed using internal cross-validation and external testing, demonstrating significant enhancements in predictive reliability compared to conventional QSPR models. The findings highlight the potential of q-RASPR for use in regulatory risk assessments and optimizing remediation strategies by providing more precise insights into the environmental fate of these contaminants.
本研究提出了一种定量跨读结构-性质关系(q-RASPR)方法,该方法将跨读中使用的化学相似性信息与传统的定量结构-性质关系(QSPR)模型相结合。这个新框架被应用于预测持久性有机污染物的物理化学性质和环境行为,特别是多氯联苯(PCBs)和多溴二苯醚(PBDEs)。通过利用精心策划的数据集并纳入基于相似性的描述符,q-RASPR方法提高了预测的准确性,特别是对于实验数据有限的化合物。使用内部交叉验证和外部测试对模型性能进行了评估,结果表明与传统的QSPR模型相比,预测可靠性有显著提高。研究结果突出了q-RASPR在监管风险评估和优化修复策略方面的潜力,通过提供对这些污染物环境归宿更精确的见解。