Clevenger Abigail J, Collier Claudia A, Gorley John Paul M, Colijn Sarah, McFarlin Maygan K, Solberg Spencer C, Kopetz Scott, Stratman Amber N, Raghavan Shreya A
Department of Biomedical Engineering, Texas A&M University, College Station, Texas.
Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
Mol Cancer Res. 2025 Feb 6;23(2):128-142. doi: 10.1158/1541-7786.MCR-24-0624.
Colorectal cancer tumors start as polyps on the inner lining of the colorectum, in which they are exposed to the mechanics of peristalsis. Our previous work leveraged a custom-built peristalsis bioreactor to demonstrate that colonic peristalsis led to cancer stem cell enrichment in colorectal cancer cells. However, this malignant mechanotransductive response was confined to select colorectal cancer lines that harbored an oncogenic mutation in the Kirsten rat sarcoma virus (KRAS) gene. In this study, we explored the involvement of activating KRAS mutations on peristalsis-associated mechanotransduction in colorectal cancer. Peristalsis enriched cancer stem cell marker Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) in KRAS mutant lines in a Wnt ligand-independent manner. Conversely, LGR5 enrichment in wild-type KRAS lines exposed to peristalsis were minimal. LGR5 enrichment downstream of peristalsis translated to increased tumorigenicity in vivo. Differences in mechanotransduction were apparent via unbiased gene set enrichment analysis, in which many unique pathways were enriched in wild-type versus mutant lines. Peristalsis also triggered β-catenin nuclear localization independent of Wnt ligands, particularly in KRAS mutant lines. The involvement of KRAS was validated via gain and loss of function strategies. Peristalsis-induced β-catenin activation and LGR5 enrichment depended on the activation of the MEK/ERK cascade. Taken together, our results demonstrated that oncogenic KRAS mutations conferred a unique peristalsis-associated mechanotransduction response to colorectal cancer cells, resulting in cancer stem cell enrichment and increased tumorigenicity. These mechanosensory connections can be leveraged in improving the sensitivity of emerging therapies that target oncogenic KRAS. Implications: Oncogenic KRAS empowers colorectal cancer cells to harness the mechanics of colonic peristalsis for malignant gain independent of other cooperating signals.
结直肠癌肿瘤始于结直肠内衬上的息肉,息肉在此处会受到蠕动的力学作用影响。我们之前的研究利用定制的蠕动生物反应器证明,结肠蠕动会导致结直肠癌细胞中的癌症干细胞富集。然而,这种恶性机械转导反应仅限于在 Kirsten 大鼠肉瘤病毒(KRAS)基因中携带致癌突变的特定结直肠癌系。在本研究中,我们探讨了激活的 KRAS 突变在结直肠癌蠕动相关机械转导中的作用。蠕动以一种不依赖 Wnt 配体的方式在 KRAS 突变系中富集癌症干细胞标志物富含亮氨酸重复序列的 G 蛋白偶联受体 5(LGR5)。相反,暴露于蠕动的野生型 KRAS 系中 LGR5 的富集程度极小。蠕动下游的 LGR5 富集转化为体内肿瘤发生能力的增强。通过无偏基因集富集分析可以明显看出机械转导的差异,其中野生型与突变型系中有许多独特的途径得到富集。蠕动还会引发 β-连环蛋白的核定位,且不依赖 Wnt 配体,特别是在 KRAS 突变系中。KRAS 的参与通过功能获得和功能丧失策略得到验证。蠕动诱导的 β-连环蛋白激活和 LGR5 富集依赖于 MEK/ERK 级联的激活。综上所述,我们的结果表明致癌性 KRAS 突变赋予结直肠癌细胞独特的与蠕动相关的机械转导反应,导致癌症干细胞富集和肿瘤发生能力增强。这些机械感觉连接可用于提高针对致癌性 KRAS 的新兴疗法的敏感性。启示:致癌性 KRAS 使结直肠癌细胞能够利用结肠蠕动的力学作用实现恶性增殖,而不依赖于其他协同信号。