Suppr超能文献

机器学习在诊断结直肠癌KRAS( Kirsten大鼠肉瘤)突变中的性能:系统评价和荟萃分析

Performance of Machine Learning in Diagnosing KRAS (Kirsten Rat Sarcoma) Mutations in Colorectal Cancer: Systematic Review and Meta-Analysis.

作者信息

Chen Kaixin, Qu Yin, Han Ye, Li Yan, Gao Huiyan, Zheng De

机构信息

Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine; Anorectal Disease Institute of Shuguang Hospital, 528 Zhangheng Road, Shanghai, 201203, China, 86 13641763662.

Department of Traditional Chinese Medicine Anorectal Surgery, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China.

出版信息

J Med Internet Res. 2025 Jul 18;27:e73528. doi: 10.2196/73528.

Abstract

BACKGROUND

With the widespread application of machine learning (ML) in the diagnosis and treatment of colorectal cancer (CRC), some studies have investigated the use of ML techniques for the diagnosis of KRAS (Kirsten rat sarcoma) mutation. Nevertheless, there is scarce evidence from evidence-based medicine to substantiate its efficacy.

OBJECTIVE

Our study was carried out to systematically review the performance of ML models developed using different modeling approaches, in diagnosing KRAS mutations in CRC. We aim to offer evidence-based foundations for the development and enhancement of future intelligent diagnostic tools.

METHODS

PubMed, Cochrane Library, Embase, and Web of Science were systematically retrieved, with the search cutoff date set to December 22, 2024. The encompassed studies are publicly published research papers that use ML to diagnose KRAS gene mutations in CRC. The risk of bias in the encompassed models was evaluated via the PROBAST (Prediction Model Risk of Bias Assessment Tool). A meta-analysis of the model's concordance index (c-index) was performed, and a bivariate mixed-effects model was used to summarize sensitivity and specificity based on diagnostic contingency tables.

RESULTS

A total of 43 studies involving 10,888 patients were included. The modeling variables were derived from clinical characteristics, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography/computed tomography, and pathological histology. In the validation cohort, for the ML model developed based on CT radiomic features, the c-index, sensitivity, and specificity were 0.87 (95% CI 0.84-0.90), 0.85 (95% CI 0.80-0.89), and 0.83 (95% CI 0.73-0.89), respectively. For the model developed using MRI radiomic features, the c-index, sensitivity, and specificity were 0.77 (95% CI 0.71-0.83), 0.78 (95% CI 0.72-0.83), and 0.73 (95% CI 0.63-0.81), respectively. For the ML model developed based on positron emission tomography/computed tomography radiomic features, the c-index, sensitivity, and specificity were 0.84 (95% CI 0.77-0.90), 0.73, and 0.83, respectively. Notably, the deep learning (DL) model based on pathological images demonstrated a c-index, sensitivity, and specificity of 0.96 (95% CI 0.94-0.98), 0.83 (95% CI 0.72-0.91), and 0.87 (95% CI 0.77-0.92), respectively. The DL model MRI-based model showed a c-index of 0.93 (95% CI 0.90-0.96), sensitivity of 0.85 (95% CI 0.75-0.91), and specificity of 0.83 (95% CI 0.77-0.88).

CONCLUSIONS

ML is highly accurate in diagnosing KRAS mutations in CRC, and DL models based on MRI and pathological images exhibit particularly strong diagnosis accuracy. More broadly applicable DL-based diagnostic tools may be developed in the future. However, the clinical application of DL models remains relatively limited at present. Therefore, future research should focus on increasing sample sizes, improving model architectures, and developing more advanced DL models to facilitate the creation of highly efficient intelligent diagnostic tools for KRAS mutation diagnosis in CRC.

摘要

背景

随着机器学习(ML)在结直肠癌(CRC)诊断和治疗中的广泛应用,一些研究探讨了使用ML技术诊断KRAS( Kirsten大鼠肉瘤)突变。然而,循证医学中缺乏确凿证据证实其有效性。

目的

我们开展本研究以系统评价采用不同建模方法开发的ML模型在诊断CRC中KRAS突变的性能。我们旨在为未来智能诊断工具的开发和改进提供循证基础。

方法

系统检索了PubMed、Cochrane图书馆、Embase和Web of Science,检索截止日期设定为2024年12月22日。纳入的研究为公开发表的使用ML诊断CRC中KRAS基因突变的研究论文。通过PROBAST(预测模型偏倚风险评估工具)评估纳入模型的偏倚风险。对模型的一致性指数(c指数)进行荟萃分析,并使用双变量混合效应模型根据诊断列联表汇总敏感性和特异性。

结果

共纳入43项研究,涉及10888例患者。建模变量来源于临床特征、计算机断层扫描(CT)、磁共振成像(MRI)、正电子发射断层扫描/计算机断层扫描和病理组织学。在验证队列中,基于CT影像组学特征开发的ML模型,其c指数、敏感性和特异性分别为0.87(95%CI 0.84 - 0.90)、0.85(95%CI 0.80 - 0.89)和0.83(95%CI 0.73 - 0.89)。对于使用MRI影像组学特征开发的模型,其c指数、敏感性和特异性分别为0.77(95%CI 0.71 - 0.83)、0.78(95%CI 0.72 - 0.83)和0.73(95%CI 0.63 - 0.81)。对于基于正电子发射断层扫描/计算机断层扫描影像组学特征开发的ML模型,其c指数、敏感性和特异性分别为0.84(95%CI 0.77 - 0.90)、0.73和未提及(原文此处缺失该模型特异性的95%CI数据)。值得注意的是,基于病理图像的深度学习(DL)模型的c指数、敏感性和特异性分别为0.96(95%CI 0.94 - 0.98)、0.83(95%CI 0.72 - 0.91)和0.87(95%CI 0.77 - 0.92)。基于MRI的DL模型的c指数为0.93(95%CI 0.90 - 0.96),敏感性为0.85(95%CI 0.75 - 0.91),特异性为0.83(95%CI 0.77 - 0.88)。

结论

ML在诊断CRC中的KRAS突变方面具有较高准确性,基于MRI和病理图像的DL模型表现出尤为强大的诊断准确性。未来可能会开发出更具广泛适用性的基于DL的诊断工具。然而,目前DL模型的临床应用仍然相对有限。因此,未来的研究应集中在增加样本量、改进模型架构以及开发更先进的DL模型,以促进创建用于CRC中KRAS突变诊断的高效智能诊断工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d8/12294651/212ca2ed5350/jmir-v27-e73528-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验