Suppr超能文献

预测尿石复发:MSTONE 数据库中重复 24 小时尿液收集的联合模型分析。

Predicting urinary stone recurrence: a joint model analysis of repeated 24-hour urine collections from the MSTONE database.

机构信息

Department of Statistics and Data Science, Southern Methodist University, Dallas, TX, USA.

Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.

出版信息

Urolithiasis. 2024 Nov 1;52(1):156. doi: 10.1007/s00240-024-01653-5.

Abstract

To address the limitations in existing urinary stone recurrence (USR) models, including failure to account for changes in 24-hour urine (24U) parameters over time and ignoring multiplicity of stone recurrences, we presented a novel statistical method to jointly model temporal trends in 24U parameters and multiple recurrent stone events. The MSTONE database spanning May 2001 to April 2015 was analyzed. A joint recurrent model was employed, combining a linear mixed-effects model for longitudinal 24U parameters and a recurrent event model with a dynamic first-order Autoregressive (AR(1)) structure. A mixture cure component was included to handle patient heterogeneity. Comparisons were made with existing methods, multivariable Cox regression and conditional Prentice-Williams-Peterson regression, both applied to established nomograms. Among 396 patients (median follow-up of 2.93 years; IQR, 1.53-4.36 years), 34.6% remained free of stone recurrence throughout the study period, 30.0% experienced a single recurrence, and 35.4% had multiple recurrences. The joint recurrent model with a mixture cure component identified significant associations between 24U parameters - including urine pH (adjusted HR = 1.991; 95% CI 1.490-2.660; p < 0.001), total volume (adjusted HR = 0.700; 95% CI 0.501-0.977; p = 0.036), potassium (adjusted HR = 0.983; 95% CI 0.974-0.991; p < 0.001), uric acid (adjusted HR = 1.528; 95% CI 1.105-2.113, p = 0.010), calcium (adjusted HR = 1.164; 95% CI 1.052-1.289; p = 0.003), and citrate (adjusted HR = 0.796; 95% CI 0.706-0.897; p < 0.001), and USR, achieving better predictive performance compared to existing methods. 24U parameters play an important role in prevention of USR, and therefore, patients with a history of stones are recommended to closely monitor for future recurrence by regularly conducting 24U tests.

摘要

为了解决现有尿石复发 (USR) 模型的局限性,包括未能随时间考虑 24 小时尿液 (24U) 参数的变化以及忽略结石多次复发,我们提出了一种新的统计方法,以联合模型化 24U 参数的时间趋势和多次复发结石事件。分析了跨越 2001 年 5 月至 2015 年 4 月的 MSTONE 数据库。采用联合复发模型,结合用于纵向 24U 参数的线性混合效应模型和具有动态一阶自回归 (AR(1)) 结构的复发事件模型。包括一个混合治愈成分,以处理患者异质性。与现有的方法进行了比较,包括多变量 Cox 回归和条件 Prentice-Williams-Peterson 回归,两者均应用于已建立的列线图。在 396 名患者中(中位随访 2.93 年;IQR,1.53-4.36 年),34.6%在整个研究期间保持无结石复发,30.0%发生单次复发,35.4%发生多次复发。具有混合治愈成分的联合复发模型确定了 24U 参数之间的显著关联 - 包括尿 pH 值(调整后的 HR=1.991;95%CI 1.490-2.660;p<0.001)、总尿量(调整后的 HR=0.700;95%CI 0.501-0.977;p=0.036)、钾(调整后的 HR=0.983;95%CI 0.974-0.991;p<0.001)、尿酸(调整后的 HR=1.528;95%CI 1.105-2.113,p=0.010)、钙(调整后的 HR=1.164;95%CI 1.052-1.289;p=0.003)和柠檬酸(调整后的 HR=0.796;95%CI 0.706-0.897;p<0.001)与 USR 相关,与现有方法相比,该模型具有更好的预测性能。24U 参数在预防 USR 中起重要作用,因此,建议有结石病史的患者通过定期进行 24U 测试密切监测未来的复发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6784/11530469/548d259aacb3/240_2024_1653_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验