Department of Statistics and Data Science, Southern Methodist University, Dallas, TX, USA.
Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Urolithiasis. 2024 Nov 1;52(1):156. doi: 10.1007/s00240-024-01653-5.
To address the limitations in existing urinary stone recurrence (USR) models, including failure to account for changes in 24-hour urine (24U) parameters over time and ignoring multiplicity of stone recurrences, we presented a novel statistical method to jointly model temporal trends in 24U parameters and multiple recurrent stone events. The MSTONE database spanning May 2001 to April 2015 was analyzed. A joint recurrent model was employed, combining a linear mixed-effects model for longitudinal 24U parameters and a recurrent event model with a dynamic first-order Autoregressive (AR(1)) structure. A mixture cure component was included to handle patient heterogeneity. Comparisons were made with existing methods, multivariable Cox regression and conditional Prentice-Williams-Peterson regression, both applied to established nomograms. Among 396 patients (median follow-up of 2.93 years; IQR, 1.53-4.36 years), 34.6% remained free of stone recurrence throughout the study period, 30.0% experienced a single recurrence, and 35.4% had multiple recurrences. The joint recurrent model with a mixture cure component identified significant associations between 24U parameters - including urine pH (adjusted HR = 1.991; 95% CI 1.490-2.660; p < 0.001), total volume (adjusted HR = 0.700; 95% CI 0.501-0.977; p = 0.036), potassium (adjusted HR = 0.983; 95% CI 0.974-0.991; p < 0.001), uric acid (adjusted HR = 1.528; 95% CI 1.105-2.113, p = 0.010), calcium (adjusted HR = 1.164; 95% CI 1.052-1.289; p = 0.003), and citrate (adjusted HR = 0.796; 95% CI 0.706-0.897; p < 0.001), and USR, achieving better predictive performance compared to existing methods. 24U parameters play an important role in prevention of USR, and therefore, patients with a history of stones are recommended to closely monitor for future recurrence by regularly conducting 24U tests.
为了解决现有尿石复发 (USR) 模型的局限性,包括未能随时间考虑 24 小时尿液 (24U) 参数的变化以及忽略结石多次复发,我们提出了一种新的统计方法,以联合模型化 24U 参数的时间趋势和多次复发结石事件。分析了跨越 2001 年 5 月至 2015 年 4 月的 MSTONE 数据库。采用联合复发模型,结合用于纵向 24U 参数的线性混合效应模型和具有动态一阶自回归 (AR(1)) 结构的复发事件模型。包括一个混合治愈成分,以处理患者异质性。与现有的方法进行了比较,包括多变量 Cox 回归和条件 Prentice-Williams-Peterson 回归,两者均应用于已建立的列线图。在 396 名患者中(中位随访 2.93 年;IQR,1.53-4.36 年),34.6%在整个研究期间保持无结石复发,30.0%发生单次复发,35.4%发生多次复发。具有混合治愈成分的联合复发模型确定了 24U 参数之间的显著关联 - 包括尿 pH 值(调整后的 HR=1.991;95%CI 1.490-2.660;p<0.001)、总尿量(调整后的 HR=0.700;95%CI 0.501-0.977;p=0.036)、钾(调整后的 HR=0.983;95%CI 0.974-0.991;p<0.001)、尿酸(调整后的 HR=1.528;95%CI 1.105-2.113,p=0.010)、钙(调整后的 HR=1.164;95%CI 1.052-1.289;p=0.003)和柠檬酸(调整后的 HR=0.796;95%CI 0.706-0.897;p<0.001)与 USR 相关,与现有方法相比,该模型具有更好的预测性能。24U 参数在预防 USR 中起重要作用,因此,建议有结石病史的患者通过定期进行 24U 测试密切监测未来的复发。