Suppr超能文献

使用警方报告的事故数据进行回顾性自动驾驶系统事故率分析的基准。

Benchmarks for retrospective automated driving system crash rate analysis using police-reported crash data.

机构信息

Waymo, LLC, Mountain View, CA.

出版信息

Traffic Inj Prev. 2024;25(sup1):S51-S65. doi: 10.1080/15389588.2024.2380522. Epub 2024 Nov 1.

Abstract

OBJECTIVES

With fully automated driving systems (ADS; SAE level 4) ride-hailing services expanding in the U.S., we are now approaching an inflection point in the history of vehicle safety assessment. The process of retrospectively evaluating ADS safety impact (as seen with seatbelts, airbags, electronic stability control, etc.) can start to yield statistically credible conclusions. An ADS safety impact measurement requires a comparison to a "benchmark" crash rate. Most benchmarks generated to-date have focused on the current human-driven fleet, which enable researchers to understand the impact of the introduced ADS technology on the current crash record status quo. This study aims to address, update, and extend the existing literature by leveraging police-reported crashes to generate human crash rates for multiple geographic areas with current ADS deployments. All of the data leveraged is publicly accessible, and the benchmark determination methodology is intended to be repeatable and transparent. Generating a benchmark that is comparable to ADS crash data is associated with certain challenges, including data selection, handling underreporting and reporting thresholds, identifying the population of drivers and vehicles to compare against, choosing an appropriate severity level to assess, and matching crash and mileage exposure data.

RESULTS

Consequently, we identify essential steps when generating benchmarks, and present our analyses amongst a backdrop of existing ADS benchmark literature. One analysis presented is the usage of established underreporting correction methodology to publicly available human driver police-reported data to improve comparability to publicly available ADS crash data. We also identified several important crash rate dependencies (geographic region, road type, and vehicle type), and show how failing to account for these features in ADS comparisons can bias results.

CONCLUSIONS

Working with police-reported crash data to create crash rate benchmarks is fraught with challenges. Researchers should be cautious in their selection of crash rate benchmarks. We present these challenges, discuss their consequences, and provide analytical guidance for addressing them. This body of work aims to contribute to the ability of the community - researchers, regulators, industry, and experts - to reach consensus on how to estimate accurate benchmarks.

摘要

目的

随着全自动驾驶系统(ADS;SAE 四级)的叫车服务在美国不断扩展,我们现在正接近车辆安全评估历史上的一个转折点。回顾性评估 ADS 安全影响的过程(如安全带、安全气囊、电子稳定控制系统等)可以开始得出具有统计学可信度的结论。ADS 安全影响的衡量需要与“基准”碰撞率进行比较。迄今为止,大多数生成的基准都集中在当前的人类驾驶车队上,这使研究人员能够了解引入的 ADS 技术对当前碰撞记录现状的影响。本研究旨在利用警方报告的事故数据,为多个部署了当前 ADS 的地理区域生成人类碰撞率,从而解决、更新和扩展现有文献。所利用的所有数据都是公开可获取的,并且基准确定方法旨在具有可重复性和透明度。生成与 ADS 碰撞数据可比的基准存在一定的挑战,包括数据选择、处理漏报和报告阈值、识别要比较的驾驶员和车辆人群、选择适当的严重程度级别进行评估,以及匹配碰撞和里程暴露数据。

结果

因此,我们确定了在生成基准时的必要步骤,并在现有的 ADS 基准文献背景下展示了我们的分析。一个呈现的分析是使用已建立的漏报修正方法,对公开的人类驾驶员警方报告数据进行分析,以提高与公开的 ADS 碰撞数据的可比性。我们还确定了几个重要的碰撞率依赖关系(地理区域、道路类型和车辆类型),并展示了在 ADS 比较中不考虑这些特征如何会产生偏差结果。

结论

使用警方报告的碰撞数据创建碰撞率基准存在诸多挑战。研究人员在选择碰撞率基准时应谨慎。我们提出了这些挑战,讨论了它们的后果,并提供了解决这些问题的分析指导。这项工作旨在帮助研究人员、监管机构、行业和专家等社区成员就如何估计准确的基准达成共识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验