Denchfield Adam, Park Hyowon, Hemley Russell J
Department of Physics, University of Illinois Chicago, Chicago, IL 60607.
Materials Science Division, Argonne National Laboratory, Lemont, IL 60439.
Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2413096121. doi: 10.1073/pnas.2413096121. Epub 2024 Nov 1.
While hydrogen-rich materials have been demonstrated to exhibit high T superconductivity at high pressures, there is an ongoing search for ternary, quaternary, and more chemically complex hydrides that achieve such high critical temperatures at much lower pressures. First-principles searches are impeded by the computational complexity of solving the Eliashberg equations for large, complex crystal structures. Here, we adopt a simplified approach using electronic indicators previously established to be correlated with superconductivity in hydrides. This is used to study complex hydride structures, which are predicted to exhibit promisingly high critical temperatures for superconductivity. In particular, we propose three classes of hydrides inspired by the Fm[Formula: see text]m RH[Formula: see text] structures that exhibit strong hydrogen network connectivity, as defined through the electron localization function. The first class [RH[Formula: see text]X[Formula: see text]Y] is based on a Pm[Formula: see text]m structure showing moderately high T, where the T estimate from electronic properties is compared with direct Eliashberg calculations and found to be surprisingly accurate. The second class of structures [(RH[Formula: see text])[Formula: see text]X[Formula: see text]YZ] improves on this with promisingly high density of states with dominant hydrogen character at the Fermi energy, typically enhancing T. The third class [(R[Formula: see text]H[Formula: see text])(R[Formula: see text]H[Formula: see text])X[Formula: see text]YZ] improves the strong hydrogen network connectivity by introducing anisotropy in the hydrogen network through a specific doping pattern. These design principles and associated model structures provide flexibility to optimize both T and the structural stability of complex hydrides.
虽然富含氢的材料已被证明在高压下表现出高 T 超导性,但人们一直在寻找能在低得多的压力下达到如此高临界温度的三元、四元及化学组成更复杂的氢化物。求解大型复杂晶体结构的埃利亚什贝格方程的计算复杂性阻碍了第一性原理搜索。在此,我们采用一种简化方法,利用先前确定的与氢化物超导性相关的电子指标。这用于研究复杂氢化物结构,预计这些结构将展现出有望达到高临界温度的超导性。特别是,我们提出了三类受 Fm[化学式:见正文]m RH[化学式:见正文]结构启发的氢化物,这些结构通过电子定位函数定义展现出强大的氢网络连通性。第一类[RH[化学式:见正文]X[化学式:见正文]Y]基于一种显示中等高 T 的 Pm[化学式:见正文]m 结构,其中从电子性质估算的 T 与直接的埃利亚什贝格计算结果相比较,发现惊人地准确。第二类结构[(RH[化学式:见正文])[化学式:见正文]X[化学式:见正文]YZ]在此基础上有所改进,在费米能处具有占主导地位的氢特征且态密度有望很高,通常会提高 T。第三类[(R[化学式:见正文]H[化学式:见正文])(R[化学式:见正文]H[化学式:见正文])X[化学式:见正文]YZ]通过特定的掺杂模式在氢网络中引入各向异性,改善了强大的氢网络连通性。这些设计原则及相关的模型结构为优化复杂氢化物的 T 和结构稳定性提供了灵活性。