Suppr超能文献

减数分裂驱动蛋白劫持一个表观遗传读码器,破坏非携带细胞后代的有丝分裂。

A meiotic driver hijacks an epigenetic reader to disrupt mitosis in noncarrier offspring.

机构信息

National Institute of Biological Sciences, Beijing 102206, China.

Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

出版信息

Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2408347121. doi: 10.1073/pnas.2408347121. Epub 2024 Nov 1.

Abstract

Killer meiotic drivers (KMDs) are selfish genetic elements that distort Mendelian inheritance by selectively killing meiotic products lacking the KMD element, thereby promoting their own propagation. Although KMDs have been found in diverse eukaryotes, only a limited number of them have been characterized at the molecular level, and their killing mechanisms remain largely unknown. In this study, we identify that a gene previously deemed essential for cell survival in the fission yeast is a single-gene KMD. This gene, , kills nearly all progeny in a × cross. By analyzing polymorphisms of among natural strains, we identify a resistant haplotype, HT3. This haplotype lacks killing ability yet confers resistance to killing by the wild-type . Proximity labeling experiments reveal an interaction between Tdk1, the protein product of , and the epigenetic reader Bdf1. Interestingly, the nonkilling Tdk1-HT3 variant does not interact with Bdf1. Cryoelectron microscopy further elucidated the binding interface between Tdk1 and Bdf1, pinpointing mutations within Tdk1-HT3 that disrupt this interface. During sexual reproduction, Tdk1 forms stable Bdf1-binding nuclear foci in all spores after meiosis. These foci persist in germinated progeny and impede chromosome segregation during mitosis by generating aberrant chromosomal adhesions. This study identifies a KMD that masquerades as an essential gene and reveals the molecular mechanism by which this KMD hijacks cellular machinery to execute killing. Additionally, we unveil that losing the hijacking ability is an evolutionary path for this single-gene KMD to evolve into a nonkilling resistant haplotype.

摘要

杀手减数分裂驱动因子 (KMDs) 是自私的遗传元件,它们通过选择性地杀死缺乏 KMD 元件的减数分裂产物来扭曲孟德尔遗传,从而促进自身的传播。尽管在不同的真核生物中都发现了 KMDs,但只有有限数量的 KMDs 在分子水平上得到了表征,其杀伤机制在很大程度上仍然未知。在这项研究中,我们鉴定出一个先前被认为对裂殖酵母细胞生存至关重要的基因 是一个单基因 KMD。这个基因 ,在 × 杂交中几乎杀死了所有的后代。通过分析自然菌株中 的多态性,我们鉴定出一个抗性单倍型 HT3。这个单倍型缺乏杀伤能力,但对野生型 的杀伤具有抗性。邻近标记实验揭示了 Tdk1 蛋白产物与表观遗传阅读器 Bdf1 之间的相互作用。有趣的是,非杀伤性的 Tdk1-HT3 变体不与 Bdf1 相互作用。低温电子显微镜进一步阐明了 Tdk1 与 Bdf1 之间的结合界面,指出了 Tdk1-HT3 内的突变破坏了这个界面。在有性生殖过程中,Tdk1 在减数分裂后所有孢子中形成稳定的 Bdf1 结合核焦点。这些焦点在萌发的 后代中持续存在,并通过产生异常的染色体粘连来阻碍有丝分裂中的染色体分离。这项研究鉴定了一个伪装成必需基因的 KMD,并揭示了这个 KMD 劫持细胞机制执行杀伤的分子机制。此外,我们揭示了失去劫持能力是这个单基因 KMD 进化成非杀伤抗性单倍型的一种进化途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b660/11551393/504eb29ca8aa/pnas.2408347121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验