Suppr超能文献

偏振激光雷达中的昆虫多样性估计。

Insect diversity estimation in polarimetric lidar.

机构信息

Dept. Physics, Lund University, Lund, Sweden.

Dept. Biology, Lund University, Lund, Sweden.

出版信息

PLoS One. 2024 Nov 1;19(11):e0312770. doi: 10.1371/journal.pone.0312770. eCollection 2024.

Abstract

Identifying flying insects is a significant challenge for biologists. Entomological lidar offers a unique solution, enabling rapid identification and classification in field settings. No other method can match its speed and efficiency in identifying insects in flight. This non-intrusive tool is invaluable for assessing insect biodiversity, informing conservation planning, and evaluating efforts to address declining insect populations. Although the species richness of co-existing insects can reach tens of thousands, current photonic sensors and lidars can differentiate roughly one hundred signal types. While the retrieved number of clusters correlate with Malaise trap diversity estimates, this taxonomic specificity, the number of discernible signal types is currently limited by instrumentation and algorithm sophistication. In this study, we report 32,533 observations of wild flying insects along a 500-meter transect. We report the benefits of lidar polarization bands for differentiating species and compare the performance of two unsupervised clustering algorithms, namely Hierarchical Cluster Analysis and Gaussian Mixture Model. Our analysis shows that polarimetric properties could be partially predicted even with unpolarized light, thus polarimetric lidar bands provide only a minor improvement in specificity. Finally, we use the physical properties of the clustered observations, such as wing beat frequency, daily activity patterns, and spatial distribution, to establish a lower bound for the number of species represented by the differentiated signal types.

摘要

鉴定飞行昆虫对生物学家来说是一项重大挑战。昆虫激光雷达提供了一种独特的解决方案,能够在野外环境中快速识别和分类。没有其他方法可以在识别飞行中的昆虫方面与它的速度和效率相媲美。这种非侵入性工具对于评估昆虫生物多样性、为保护规划提供信息以及评估解决昆虫数量下降的努力非常有价值。尽管共存昆虫的物种丰富度可能达到数万种,但目前的光子传感器和激光雷达可以区分大约一百种信号类型。虽然检索到的聚类数量与 Malaise 陷阱多样性估计相关,但这种分类特异性,可识别信号类型的数量目前受到仪器和算法复杂性的限制。在这项研究中,我们沿着 500 米的样带报告了 32533 次野生飞行昆虫的观测结果。我们报告了激光雷达偏振带区分物种的好处,并比较了两种无监督聚类算法,即层次聚类分析和高斯混合模型的性能。我们的分析表明,即使使用非偏振光,偏振特性也可以部分预测,因此偏振激光雷达带在特异性方面仅略有提高。最后,我们使用聚类观测的物理特性,例如翅膀拍打频率、日常活动模式和空间分布,为区分信号类型所代表的物种数量建立了下限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0403/11530007/7fd9ee952108/pone.0312770.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验