Suppr超能文献

显性肌球蛋白贮积性肌病突变破坏果蝇的横纹肌以及人类心脏粗肌丝的肌球蛋白尾-尾相互作用组。

Dominant myosin storage myopathy mutations disrupt striated muscles in Drosophila and the myosin tail-tail interactome of human cardiac thick filaments.

作者信息

Viswanathan Meera C, Dutta Debabrata, Kronert William A, Chitre Kripa, Padrón Raúl, Craig Roger, Bernstein Sanford I, Cammarato Anthony

机构信息

Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.

Department of Biology, Molecular Biology Institute and Heart Institute San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.

出版信息

Genetics. 2025 Jan 8;229(1):1-34. doi: 10.1093/genetics/iyae174.

Abstract

Myosin storage myopathy (MSM) is a rare skeletal muscle disorder caused by mutations in the slow muscle/β-cardiac myosin heavy chain (MHC) gene. MSM missense mutations frequently disrupt the tail's stabilizing heptad repeat motif. Disease hallmarks include subsarcolemmal hyaline-like β-MHC aggregates, muscle weakness, and, occasionally, cardiomyopathy. We generated transgenic, heterozygous Drosophila to examine the dominant physiological and structural effects of the L1793P, R1845W, and E1883K MHC MSM mutations on diverse muscles. The MHC variants reduced lifespan and flight and jump abilities. Moreover, confocal and electron microscopy revealed that they provoked indirect flight muscle breaks and myofibrillar disarray/degeneration with filamentous inclusions. Incorporation of GFP-myosin enabled in situ determination of thick filament lengths, which were significantly reduced in all mutants. Semiautomated heartbeat analysis uncovered aberrant cardiac function, which worsened with age. Thus, our fly models phenocopied traits observed among MSM patients. We additionally mapped the mutations onto a recently determined, 6 Å resolution, cryo-EM structure of the human cardiac thick filament. The R1845W mutation replaces a basic arginine with a polar-neutral, bulkier tryptophan, while E1883K reverses charge at critical filament loci. Both would be expected to disrupt the core and the outer shell of the backbone structure. Replacing L1793 with a proline, a potent breaker of α-helices, could disturb the coiled-coil of the myosin rod and alter the tail-tail interactome. Hence, all mutations likely destabilize and weaken the filament backbone. This may trigger disease in humans, while potentially analogous perturbations are likely to yield the observed thick filament and muscle disruption in our fly models.

摘要

肌球蛋白贮积性肌病(MSM)是一种罕见的骨骼肌疾病,由慢肌/β-心肌肌球蛋白重链(MHC)基因突变引起。MSM错义突变经常破坏尾部稳定的七肽重复基序。疾病特征包括肌膜下透明样β-MHC聚集体、肌肉无力,偶尔还包括心肌病。我们构建了转基因杂合果蝇,以研究L1793P、R1845W和E1883K MHC MSM突变对不同肌肉的显性生理和结构影响。MHC变体缩短了寿命,并降低了飞行和跳跃能力。此外,共聚焦显微镜和电子显微镜显示,它们引发了间接飞行肌断裂以及伴有丝状内含物的肌原纤维紊乱/退化。GFP-肌球蛋白的掺入使得能够原位测定粗肌丝长度,所有突变体中的粗肌丝长度均显著缩短。半自动心跳分析发现心脏功能异常,且随年龄增长而恶化。因此,我们的果蝇模型模拟了MSM患者中观察到的特征。我们还将这些突变映射到最近确定的、分辨率为6埃的人类心脏粗肌丝冷冻电镜结构上。R1845W突变将一个碱性精氨酸替换为极性中性、体积更大的色氨酸,而E1883K在关键的肌丝位点上反转了电荷。预计这两者都会破坏主干结构的核心和外壳。用脯氨酸取代L1793,脯氨酸是α-螺旋的强效破坏者,可能会扰乱肌球蛋白杆的卷曲螺旋,并改变尾-尾相互作用组。因此,所有突变可能都会使肌丝主干不稳定并削弱其强度。这可能在人类中引发疾病,而在我们的果蝇模型中,潜在的类似扰动可能会导致观察到的粗肌丝和肌肉破坏。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04bd/11708916/2c4517b7acb0/iyae174f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验