Suppr超能文献

基于原型级融合的不确定性引导半监督少样本分割

Uncertainty guided semi-supervised few-shot segmentation with prototype level fusion.

作者信息

Wang Hailing, Wu Chunwei, Zhang Hai, Cao Guitao, Cao Wenming

机构信息

Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China; MOE Research Center for Software/Hardware Co-Design Engineering, East China Normal University, Shanghai 200062, China.

Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China; MOE Research Center for Software/Hardware Co-Design Engineering, East China Normal University, Shanghai 200062, China.

出版信息

Neural Netw. 2025 Jan;181:106802. doi: 10.1016/j.neunet.2024.106802. Epub 2024 Oct 18.

Abstract

Few-Shot Semantic Segmentation (FSS) aims to tackle the challenge of segmenting novel categories with limited annotated data. However, given the diversity among support-query pairs, transferring meta-knowledge to unseen categories poses a significant challenge, particularly in scenarios featuring substantial intra-class variance within an episode task. To alleviate this issue, we propose the Uncertainty Guided Adaptive Prototype Network (UGAPNet) for semi-supervised few-shot semantic segmentation. The key innovation lies in the generation of reliable pseudo-prototypes as an additional supplement to alleviate intra-class semantic bias. Specifically, we employ a shared meta-learner to produce segmentation results for unlabeled images in the pseudo-label prediction module. Subsequently, we incorporate an uncertainty estimation module to quantify the difference between prototypes extracted from query and support images, facilitating pseudo-label denoising. Utilizing these refined pseudo-label samples, we introduce a prototype rectification module to obtain effective pseudo-prototypes and generate a generalized adaptive prototype for the segmentation of query images. Furthermore, generalized few-shot semantic segmentation extends the paradigm of few-shot semantic segmentation by simultaneously segmenting both unseen and seen classes during evaluation. To address the challenge of confusion region prediction between these two categories, we further propose a novel Prototype-Level Fusion Strategy in the prototypical contrastive space. Extensive experiments conducted on two benchmarks demonstrate the effectiveness of the proposed UGAPNet and prototype-level fusion strategy. Our source code will be available on https://github.com/WHL182/UGAPNet.

摘要

少样本语义分割(FSS)旨在应对在有限标注数据下对新类别进行分割的挑战。然而,鉴于支持-查询对之间的多样性,将元知识转移到未见类别上带来了重大挑战,特别是在情节任务中存在大量类内差异的场景下。为了缓解这个问题,我们提出了用于半监督少样本语义分割的不确定性引导自适应原型网络(UGAPNet)。关键创新在于生成可靠的伪原型作为额外补充,以减轻类内语义偏差。具体来说,我们在伪标签预测模块中使用一个共享元学习器来生成未标记图像的分割结果。随后,我们引入一个不确定性估计模块来量化从查询图像和支持图像中提取的原型之间的差异,便于伪标签去噪。利用这些经过细化的伪标签样本,我们引入一个原型校正模块来获得有效的伪原型,并为查询图像的分割生成一个广义自适应原型。此外,广义少样本语义分割通过在评估期间同时分割未见类别和已见类别来扩展少样本语义分割的范式。为了应对这两类之间混淆区域预测的挑战,我们进一步在原型对比空间中提出了一种新颖的原型级融合策略。在两个基准上进行的大量实验证明了所提出的UGAPNet和原型级融合策略的有效性。我们的源代码将在https://github.com/WHL182/UGAPNet上提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验