Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, China.
Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, China.
J Colloid Interface Sci. 2025 Feb;679(Pt B):929-938. doi: 10.1016/j.jcis.2024.10.107. Epub 2024 Oct 24.
Deprivation of oxygen and scavenging of reactive oxygen species (ROS) severely restrict the antitumor efficiency of sonodynamic therapy (SDT). To address these challs, we report the BiMoO/Prussian Blue-Au (BMO/PB-Au) nanosystem as piezoelectric sonosensitiser for highly efficient ROS production under ultrasonic irradiation. In this system, the nanosystem has catalase-like (CAT) and glutathione oxidase (GSHOD) catalytic activity, which can enhance SDT effectively by producing reactive oxygen species and consuming glutathione (GSH). While the narrow bandgap and heterojunctions contribute to the improved charge separation and charge recombination suppression of the piezoelectric semiconductor BMO, accelerating ROS generation. Packaging MCF-7 cancer cell membranes (CM) on the surface of BMO/PB-Au will effectively improve the enrichment of nanoparticles in tumor tissue. The in vivo results showed that the BMO/PB-Au@CM nanoplatform can effectively inhibit tumor growth through the enhanced SDT effect. Our findings provide a paradigm to rationally design hypoxia-relieve and GSH-depleted SDT platform to for promoting cancer therapy efficiency.
缺氧和清除活性氧物种(ROS)严重限制了声动力学疗法(SDT)的抗肿瘤效率。为了解决这些挑战,我们报告了 BiMoO/普鲁士蓝-Au(BMO/PB-Au)纳米系统作为超声辐射下高效 ROS 产生的压电声敏剂。在该系统中,纳米系统具有类过氧化氢酶(CAT)和谷胱甘肽氧化酶(GSHOD)的催化活性,可通过产生活性氧和消耗谷胱甘肽(GSH)来有效增强 SDT。而窄带隙和异质结有助于提高压电半导体 BMO 的电荷分离和抑制电荷复合,从而加速 ROS 的产生。将 MCF-7 癌细胞膜(CM)包装在 BMO/PB-Au 的表面上,将有效地提高纳米颗粒在肿瘤组织中的富集。体内结果表明,BMO/PB-Au@CM 纳米平台可通过增强 SDT 效应有效抑制肿瘤生长。我们的研究结果为合理设计缓解缺氧和耗竭 GSH 的 SDT 平台以促进癌症治疗效率提供了范例。