Cheng Yingjie, He Li, Mao Dong, Shi Xuejian, Wang Chunzhong, Duan Fengxue, Xue Pengyan, Wang Yizhan, Wei Yingjin
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China.
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China.
J Colloid Interface Sci. 2025 Feb;679(Pt B):939-946. doi: 10.1016/j.jcis.2024.10.167. Epub 2024 Oct 28.
The active electronic states in 1T-MoS are highly desirable for catalyzing polysulfides conversion. However, stable 1T-MoS is difficult to produce using common approaches. Herein, V uniformly doped in-plane 1T-2H heterostructured MoS nanosheets (V-MoS) are prepared by a facile hydrothermal method with a polyoxometalate precursor containing periodic Mo and V atomic arrangement. The doping of V induces the phase transition from semiconducting 2H-MoS to metallic 1T-MoS and stabilizes the resulted 1T phase. Importantly, the incorporation of V not only modifies the surface electronic property of MoS, enhancing the active site density, but also improves the adsorption of polysulfides and the catalytic efficiency for sulfur redox reactions. With these advantages, the Li-S batteries using V-MoS electrocatalyst achieve accelerated reaction kinetics and superior electrochemical performance. When the S loading of the cathode is 5.41 mg cm, a favorable discharge capacity of 4.98 mAh cm is obtained with satisfying cycle stability. This work provides an efficient atomic engineering approach for the design of high performance electrocatalyst for Li-S batteries.
1T相二硫化钼中的活性电子态对于催化多硫化物转化极为有利。然而,采用常规方法难以制备出稳定的1T相二硫化钼。在此,通过一种简便的水热法,以含有周期性钼和钒原子排列的多金属氧酸盐前驱体,制备出钒均匀掺杂的面内1T-2H异质结构二硫化钼纳米片(V-MoS)。钒的掺杂诱导了从半导体性2H相二硫化钼到金属性1T相二硫化钼的相变,并使所得的1T相得以稳定。重要的是,钒的引入不仅改变了二硫化钼的表面电子性质,提高了活性位点密度,还改善了多硫化物的吸附以及硫氧化还原反应的催化效率。具备这些优势,使用V-MoS电催化剂的锂硫电池实现了加速的反应动力学和优异的电化学性能。当阴极的硫负载量为5.41 mg cm时,可获得4.98 mAh cm的良好放电容量以及令人满意的循环稳定性。这项工作为锂硫电池高性能电催化剂的设计提供了一种有效的原子工程方法。