Suppr超能文献

癌症生物学中质谱流式细胞术数据的监督分析初学者指南。

A beginner's guide to supervised analysis for mass cytometry data in cancer biology.

作者信息

Wlosik Julia, Granjeaud Samuel, Gorvel Laurent, Olive Daniel, Chretien Anne-Sophie

机构信息

Team 'Immunity and Cancer', Marseille Cancer Research Center, Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, Aix-Marseille University UM105, Marseille, France.

Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France.

出版信息

Cytometry A. 2024 Dec;105(12):853-869. doi: 10.1002/cyto.a.24901. Epub 2024 Nov 1.

Abstract

Mass cytometry enables deep profiling of biological samples at single-cell resolution. This technology is more than relevant in cancer research due to high cellular heterogeneity and complexity. Downstream analysis of high-dimensional datasets increasingly relies on machine learning (ML) to extract clinically relevant information, including supervised algorithms for classification and regression purposes. In cancer research, they are used to develop predictive models that will guide clinical decision making. However, the development of supervised algorithms faces major challenges, such as sufficient validation, before being translated into the clinics. In this work, we provide a framework for the analysis of mass cytometry data with a specific focus on supervised algorithms and practical examples of their applications. We also raise awareness on key issues regarding good practices for researchers curious to implement supervised ML on their mass cytometry data. Finally, we discuss the challenges of supervised ML application to cancer research.

摘要

质谱流式细胞术能够在单细胞分辨率下对生物样本进行深度分析。由于细胞高度异质性和复杂性,这项技术在癌症研究中具有重要意义。高维数据集的下游分析越来越依赖机器学习(ML)来提取临床相关信息,包括用于分类和回归目的的监督算法。在癌症研究中,这些算法用于开发预测模型以指导临床决策。然而,在监督算法转化为临床应用之前,其开发面临重大挑战,如充分验证。在这项工作中,我们提供了一个分析质谱流式细胞术数据的框架,特别关注监督算法及其应用实例。我们还提高了对希望在其质谱流式细胞术数据上实施监督式机器学习的研究人员良好实践关键问题的认识。最后,我们讨论了监督式机器学习应用于癌症研究的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验