Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
Department of Radiology, Kuopio University Hospital, Kuopio, Finland.
J Cancer Res Clin Oncol. 2024 Nov 1;150(11):483. doi: 10.1007/s00432-024-06008-6.
The hyperintensity area surrounding the residual cavity on postoperative fluid-attenuated inversion recovery (FLAIR) image is a potential site for glioblastoma (GBM) recurrence. This study aimed to develop a nomogram using quantitative metrics from subregions of this area, prior to chemoradiotherapy (CRT), to predict early GBM recurrence.
Adult patients with GBM diagnosed between October 2018 and October 2022 were retrospectively analyzed. Quantitative metrics, including the mean, maximum, minimum, median values, and standard deviation of FLAIR signal intensity (SI) (measured using 3D-Slicer software), were extracted from the following subregions surrounding the residual cavity on post-contrast T1-weighted (CE-T1WI)-FLAIR fusion images: the enhancing region (ER), non-enhancing region (NER), and combined ER + NER. Independent prognostic factors were identified using Cox regression and least absolute shrinkage and selection operator (LASSO) analyses and were incorporated into the prediction nomogram model. The model's performance was evaluated using the C-index, calibration curves, and decision curves.
A total of 129 adult GBM patients were enrolled and randomly assigned to a training (n = 90) and a validation cohorts (n = 39) in a 7:3 ratio. Sixty-nine patients experienced postoperative recurrence. Cox regression analysis identified subventricular zone involvement, the median FLAIR intensity in the ER, the rFLAIR (relative FLAIR intensity compared to the contralateral normal region) of ER + NER, and corpus callosum involvement as independent prognostic factors. For predicting recurrence within 1 year after surgery, the nomogram model had a C-index of 0.733 in the training cohort and 0.746 in the validation cohort. Based on the nomogram score, post-operative GBM patients could be stratified into high- and low-risk for recurrence.
Nomogram models which based on quantitative metrics from FLAIR hyperintensity subregions may serve as potential markers for assessing GBM recurrence risk. This approach could enhance clinical decision-making and provide an alternative method for recurrence estimation in GBM patients.
术后液体衰减反转恢复(FLAIR)图像上残余腔周围的高信号区是胶质母细胞瘤(GBM)复发的潜在部位。本研究旨在建立一个在放化疗(CRT)前使用该区域亚区的定量指标的列线图,以预测早期 GBM 复发。
回顾性分析 2018 年 10 月至 2022 年 10 月期间诊断为 GBM 的成年患者。使用 3D-Slicer 软件从对比后 T1 加权(CE-T1WI)-FLAIR 融合图像上的残余腔周围提取定量指标,包括 FLAIR 信号强度(SI)的平均值、最大值、最小值、中位数和标准差(测量):增强区(ER)、非增强区(NER)和 ER+NER 联合区。使用 Cox 回归和最小绝对收缩和选择算子(LASSO)分析确定独立预后因素,并将其纳入预测列线图模型。使用 C 指数、校准曲线和决策曲线评估模型性能。
共纳入 129 例成年 GBM 患者,按 7:3 的比例随机分为训练集(n=90)和验证集(n=39)。69 例患者术后复发。Cox 回归分析确定侧脑室周围侵犯、ER 中位数 FLAIR 强度、ER+NER 的 rFLAIR(与对侧正常区域相比的相对 FLAIR 强度)和胼胝体侵犯为独立预后因素。对于预测术后 1 年内复发,列线图模型在训练队列中的 C 指数为 0.733,在验证队列中的 C 指数为 0.746。根据列线图评分,术后 GBM 患者可分为高复发风险和低复发风险。
基于 FLAIR 高信号亚区定量指标的列线图模型可能是评估 GBM 复发风险的潜在标志物。这种方法可以增强临床决策,并为 GBM 患者的复发评估提供一种替代方法。