Suppr超能文献

基于多参数磁共振成像的影像组学列线图预测胶质母细胞瘤中端粒酶逆转录酶启动子突变及预后

Multi-parameter MRI based radiomics nomogram for predicting telomerase reverse transcriptase promoter mutation and prognosis in glioblastoma.

作者信息

Chen Ling, Chen Runrong, Li Tao, Tang Chuyun, Li Yao, Zeng Zisan

机构信息

Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.

Department of Radiology, Liuzhou Workers Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.

出版信息

Front Neurol. 2023 Sep 26;14:1266658. doi: 10.3389/fneur.2023.1266658. eCollection 2023.

Abstract

OBJECTIVE

To investigate the clinical utility of multi-parameter MRI-based radiomics nomogram for predicting telomerase reverse transcriptase (TERT) promoter mutation status and prognosis in adult glioblastoma (GBM).

METHODS

We retrospectively analyzed MRI and pathological data of 152 GBM patients. A total of 2,832 radiomics features were extracted and filtered from preoperative MRI images. A radiomics nomogram was created on the basis of radiomics signature (rad-score) and clinical traits. The performance of the nomogram in TERT mutation identification was assessed using receiver operating characteristic (ROC) curve, calibration curves, and clinical decision curves. Pathologically confirmed TERT mutations and risk score-based TERT mutations were employed to assess patient prognosis, respectively.

RESULTS

The random forest (RF) algorithm outperformed the other two algorithms, yielding the best diagnostic efficacy in differentiating TERT mutations, with area under the curve (AUC) values of 0.892 (95% CI: 0.828-0.956) and 0.824 (95% CI: 0.677-0.971) in the training set and validation sets, respectively. Furthermore, the predictive power of the radiomics nomogram constructed with the rad-score and clinical variables reached 0.916 (95%CI: 0.864, 0.968) in the training set and 0.880 (95%CI: 0.743, 1) in the validation set. Calibration curve and decision curve analysis findings further uphold the clinical application value of the radiomics nomogram. The overall survival of the high-risk subgroup was significantly shorter than that of the low-risk subgroup, which was consistent with the results of the pathologically confirmed TERT mutation group.

CONCLUSION

The radiomics nomogram could non-invasively provide promising insights for predicting TERT mutations and prognosis in GBM patients with excellent identification and calibration abilities.

摘要

目的

探讨基于多参数磁共振成像(MRI)的影像组学列线图在预测成人胶质母细胞瘤(GBM)中端粒酶逆转录酶(TERT)启动子突变状态及预后方面的临床应用价值。

方法

回顾性分析152例GBM患者的MRI及病理数据。从术前MRI图像中提取并筛选出共2832个影像组学特征。基于影像组学特征(rad-score)和临床特征创建影像组学列线图。采用受试者工作特征(ROC)曲线、校准曲线和临床决策曲线评估列线图在TERT突变识别中的性能。分别采用病理确诊的TERT突变和基于风险评分的TERT突变评估患者预后。

结果

随机森林(RF)算法优于其他两种算法,在鉴别TERT突变方面具有最佳诊断效能,训练集和验证集的曲线下面积(AUC)值分别为0.892(95%CI:0.828 - 0.956)和0.824(95%CI:0.677 - 0.971)。此外,由rad-score和临床变量构建的影像组学列线图在训练集和验证集的预测能力分别达到0.916(95%CI:0.864,0.968)和0.880(95%CI:0.743,1)。校准曲线和决策曲线分析结果进一步支持了影像组学列线图的临床应用价值。高风险亚组的总生存期显著短于低风险亚组,这与病理确诊的TERT突变组结果一致。

结论

影像组学列线图能够无创地为预测GBM患者的TERT突变及预后提供有前景的见解,具有出色的识别和校准能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff00/10565857/3a759256f508/fneur-14-1266658-g001.jpg

相似文献

8
A radiomics nomogram based on multiparametric MRI might stratify glioblastoma patients according to survival.
Eur Radiol. 2019 Oct;29(10):5528-5538. doi: 10.1007/s00330-019-06069-z. Epub 2019 Mar 7.
9
Noninvasive Prediction of TERT Promoter Mutations in High-Grade Glioma by Radiomics Analysis Based on Multiparameter MRI.
Biomed Res Int. 2020 May 15;2020:3872314. doi: 10.1155/2020/3872314. eCollection 2020.
10
MRI radiomics model for predicting TERT promoter mutation status in glioblastoma.
Brain Behav. 2023 Dec;13(12):e3324. doi: 10.1002/brb3.3324. Epub 2023 Dec 6.

本文引用的文献

3
MRI radiomics and potential applications to glioblastoma.
Front Oncol. 2023 Feb 17;13:1134109. doi: 10.3389/fonc.2023.1134109. eCollection 2023.
4
8
Major Features of the 2021 WHO Classification of CNS Tumors.
Neurotherapeutics. 2022 Oct;19(6):1691-1704. doi: 10.1007/s13311-022-01249-0. Epub 2022 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验