Suppr超能文献

基于双曲空间的弱监督视频异常检测

Weakly supervised video anomaly detection based on hyperbolic space.

作者信息

Qi Meilin, Wu Yuanyuan

机构信息

Chengdu University of Technology, College of Computer Science and Cyber Security (Pilot Software College), Chengdu, 610059, China.

出版信息

Sci Rep. 2024 Nov 1;14(1):26348. doi: 10.1038/s41598-024-77505-4.

Abstract

In recent years, there has been a proliferation of weakly supervised methods in the field of video anomaly detection. Despite significant progress in existing research, these efforts have primarily focused on addressing this issue within Euclidean space. Conducting weakly supervised video anomaly detection in Euclidean space imposes a fundamental limitation by constraining the ability to model complex patterns due to the dimensionality constraints of the embedding space and lacking the capacity to model long-term contextual information. This inadequacy can lead to misjudgments of anomalous events due to insufficient video representation. However, hyperbolic space has shown significant potential for modeling complex data, offering new insights. In this paper, we rethink weakly supervised video anomaly detection with a novel perspective: transforming video features from Euclidean space into hyperbolic space may enable the network to learn implicit relationships in normal and anomalous videos, thereby enhancing its ability to effectively distinguish between them. Finally, to validate our approach, we conducted extensive experiments on the UCF-Crime and XD-Violence datasets. Experimental results show that our method not only has the lowest number of parameters but also achieves state-of-the-art performance on the XD-Violence dataset using only RGB information.

摘要

近年来,视频异常检测领域中弱监督方法大量涌现。尽管现有研究取得了显著进展,但这些工作主要集中在欧几里得空间内解决这一问题。在欧几里得空间中进行弱监督视频异常检测存在一个基本限制,即由于嵌入空间的维度约束以及缺乏对长期上下文信息进行建模的能力,限制了对复杂模式进行建模的能力。这种不足可能会因视频表示不足而导致对异常事件的误判。然而,双曲空间在对复杂数据进行建模方面显示出巨大潜力,提供了新的见解。在本文中,我们从一个新颖的角度重新思考弱监督视频异常检测:将视频特征从欧几里得空间转换到双曲空间可能使网络能够学习正常视频和异常视频中的隐含关系,从而增强其有效区分它们的能力。最后,为了验证我们的方法,我们在UCF-Crime和XD-Violence数据集上进行了广泛的实验。实验结果表明,我们的方法不仅参数数量最少,而且仅使用RGB信息就在XD-Violence数据集上达到了当前最优性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b7/11530626/7fb62a303b27/41598_2024_77505_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验