Department of Plant Protection, Faculty of Agricultural Sciences and Technology, Sivas University of Science and Technology, Sivas, Turkey.
Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technology, Sivas University of Science and Technology, Sivas, Turkey.
World J Microbiol Biotechnol. 2024 Nov 2;40(12):376. doi: 10.1007/s11274-024-04182-w.
Phosphate-solubilizing fungus (PSF) strain alaromyces funiculosus was investigated for phosphorus solubilization, utilizing a range of pH levels and phosphate sources, followed by data confirmation through artificial intelligence modeling. T. funiculosus strain was exposed to five different phosphate sources [Ca(PO), FePO, CaHPO, AlPO, and phytin] at different pH levels (4.5, 5.5, 6.5, 7.0, and 7.5). ANOVA, Pareto charts, and normal plots were used for analyzing the data. Artificial intelligence-based multilayer perceptron (MLP), random forest (RF) and extreme gradient boosting (XGBoost) models were used for data validation and prediction. Five-fold more phosphate (P) solubility by T. funiculosus was registered as compared to the control. The maximum soluble P was found at pH 4.5 (318324 ppb) and CaHPO (444045 ppb). Combination of phytin × 4.5 pH yielded the highest dissolved phosphorus (1537988 ppb), followed by 127458 ppb from the control × 4.5 pH. Pareto chart and normal plot analysis showedthe negative impact of pH (B), pH × F/C (fungus/control) × P-Source (ABC), and F/C (A) factor. Whereas pH × P-Source (AC) and P-Source (C) has positive impact on P solubility. The maximum R scores showed the order of RF (0.944) > MLP (0.938) > XGBoost (0.899). T. funiculosus strain has a grain potential for sustainable use for different types of phosphate sources. Application AI/ML models based on different performance metrics predicted the validated the attained results. In future research, it is recommended to check the efficacy of developed strategy under field conditions and to check the impact on soil and plant.
解磷真菌(PSF)塔宾曲霉被研究用于利用一系列 pH 值和磷酸盐来源进行磷的溶解,并通过人工智能建模进行数据确认。将塔宾曲霉菌株暴露于五种不同的磷酸盐源[Ca(PO)、FePO、CaHPO、AlPO 和植酸]在不同的 pH 值(4.5、5.5、6.5、7.0 和 7.5)下。使用方差分析(ANOVA)、帕累托图和正态图分析数据。使用基于人工智能的多层感知器(MLP)、随机森林(RF)和极端梯度提升(XGBoost)模型进行数据验证和预测。与对照相比,塔宾曲霉的磷酸盐(P)溶解度增加了五倍。在 pH 4.5(318324 ppb)和 CaHPO(444045 ppb)下发现最大可溶磷。植酸×4.5 pH 的组合产生了最高的溶解磷(1537988 ppb),其次是对照×4.5 pH 的 127458 ppb。帕累托图和正态图分析表明,pH(B)、pH×F/C(真菌/对照)×P-源(ABC)和 F/C(A)因子对 P 溶解度有负面影响。而 pH×P-源(AC)和 P-源(C)对 P 溶解度有积极影响。最大 R 分数显示 RF(0.944)>MLP(0.938)>XGBoost(0.899)的顺序。塔宾曲霉菌株具有可持续利用不同类型磷酸盐源的潜力。基于不同性能指标的 AI/ML 模型的应用预测并验证了获得的结果。在未来的研究中,建议在田间条件下检查所开发策略的效果,并检查对土壤和植物的影响。