Suppr超能文献

多参数 MRI 放射组学模型预测脑膜瘤切除术后进行性脑水肿和脑出血。

Multi-parameter MRI radiomics model in predicting postoperative progressive cerebral edema and hemorrhage after resection of meningioma.

机构信息

Department of Radiology, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China.

Advanced Neuroimaging Laboratory, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China.

出版信息

Cancer Imaging. 2024 Nov 1;24(1):149. doi: 10.1186/s40644-024-00796-3.

Abstract

BACKGROUND

Postoperative progressive cerebral edema and hemorrhage (PPCEH) are major complications after meningioma resection, yet their preoperative predictive studies are limited. The aim is to develop and validate a multiparametric MRI machine learning model to predict PPCEH after meningioma resection.

METHODS

This retrospective study included 148 patients with meningioma. A stratified three-fold cross-validation was used to split the dataset into training and validation sets. Radiomics features from the tumor enhancement (TE) and peritumoral brain edema (PTBE) regions were extracted from T1WI, T2WI, and ADC maps. Support vector machine constructed different radiomics models, and logistic regression explored clinical risk factors. Prediction models, integrating clinical and radiomics features, were evaluated using the area under the curve (AUC), visualized in a nomogram.

RESULTS

The radiomics model based on TE and PTBE regions (training set mean AUC: 0.85 (95% CI: 0.78-0.93), validation set mean AUC: 0.77 (95%CI: 0.63-0.90)) outperformed the model with TE region solely (training set mean AUC: 0.83 (95% CI: 0.76-0.91), validation set mean AUC: 0.73 (95% CI: 0.58-0.87)). Furthermore, the combined model incorporating radiomics features, and clinical features of preoperative peritumoral edema and tumor boundary adhesion, had the best predictive performance, with AUC values of 0.87 (95% CI: 0.80-0.94) and 0.84 (95% CI: 0.72-0.95) for the training and validation set.

CONCLUSIONS

We developed a novel model based on clinical characteristics and multiparametric radiomics features derived from TE and PTBE regions, which can accurately and non-invasively predict PPCEH after meningioma resection. Additionally, our findings suggest the crucial role of PTBE radiomics features in understanding the potential mechanisms of PPCEH.

摘要

背景

术后进行性脑水肿和出血(PPCEH)是脑膜瘤切除术后的主要并发症,但对其术前预测的研究有限。目的是开发和验证一种多参数 MRI 机器学习模型,以预测脑膜瘤切除术后的 PPCEH。

方法

本回顾性研究纳入了 148 例脑膜瘤患者。采用分层三折交叉验证法将数据集分为训练集和验证集。从 T1WI、T2WI 和 ADC 图中提取肿瘤增强(TE)和瘤周水肿(PTBE)区域的放射组学特征。支持向量机构建不同的放射组学模型,逻辑回归探索临床危险因素。使用曲线下面积(AUC)评估整合临床和放射组学特征的预测模型,并通过列线图可视化。

结果

基于 TE 和 PTBE 区域的放射组学模型(训练集平均 AUC:0.85(95%CI:0.78-0.93),验证集平均 AUC:0.77(95%CI:0.63-0.90))优于仅基于 TE 区域的模型(训练集平均 AUC:0.83(95%CI:0.76-0.91),验证集平均 AUC:0.73(95%CI:0.58-0.87))。此外,结合放射组学特征以及术前瘤周水肿和肿瘤边界粘连的临床特征的联合模型具有最佳预测性能,其 AUC 值分别为 0.87(95%CI:0.80-0.94)和 0.84(95%CI:0.72-0.95),适用于训练集和验证集。

结论

我们开发了一种基于临床特征和源自 TE 和 PTBE 区域的多参数放射组学特征的新模型,该模型可准确、无创地预测脑膜瘤切除术后的 PPCEH。此外,我们的研究结果表明,PTBE 放射组学特征在理解 PPCEH 潜在机制方面具有重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c58/11529156/ba2dadb38ba5/40644_2024_796_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验