Suppr超能文献

放射组学和机器学习应用在颅内脑膜瘤管理中的作用聚焦:神经肿瘤学的新视角:综述

A Spotlight on the Role of Radiomics and Machine-Learning Applications in the Management of Intracranial Meningiomas: A New Perspective in Neuro-Oncology: A Review.

作者信息

Brunasso Lara, Ferini Gianluca, Bonosi Lapo, Costanzo Roberta, Musso Sofia, Benigno Umberto E, Gerardi Rosa M, Giammalva Giuseppe R, Paolini Federica, Umana Giuseppe E, Graziano Francesca, Scalia Gianluca, Sturiale Carmelo L, Di Bonaventura Rina, Iacopino Domenico G, Maugeri Rosario

机构信息

Neurosurgical Clinic AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy.

Department of Radiation Oncology, REM Radioterapia SRL, 95125 Catania, Italy.

出版信息

Life (Basel). 2022 Apr 14;12(4):586. doi: 10.3390/life12040586.

Abstract

: In recent decades, the application of machine learning technologies to medical imaging has opened up new perspectives in neuro-oncology, in the so-called radiomics field. Radiomics offer new insight into glioma, aiding in clinical decision-making and patients' prognosis evaluation. Although meningiomas represent the most common primary CNS tumor and the majority of them are benign and slow-growing tumors, a minor part of them show a more aggressive behavior with an increased proliferation rate and a tendency to recur. Therefore, their treatment may represent a challenge. According to PRISMA guidelines, a systematic literature review was performed. We included selected articles (meta-analysis, review, retrospective study, and case-control study) concerning the application of radiomics method in the preoperative diagnostic and prognostic algorithm, and planning for intracranial meningiomas. We also analyzed the contribution of radiomics in differentiating meningiomas from other CNS tumors with similar radiological features. In the first research stage, 273 papers were identified. After a careful screening according to inclusion/exclusion criteria, 39 articles were included in this systematic review. Several preoperative features have been identified to increase preoperative intracranial meningioma assessment for guiding decision-making processes. The development of valid and reliable non-invasive diagnostic and prognostic modalities could have a significant clinical impact on meningioma treatment.

摘要

近几十年来,机器学习技术在医学成像中的应用为神经肿瘤学领域,即所谓的放射组学领域,开辟了新的前景。放射组学为胶质瘤提供了新的见解,有助于临床决策和患者预后评估。虽然脑膜瘤是最常见的原发性中枢神经系统肿瘤,且大多数为良性且生长缓慢的肿瘤,但其中一小部分表现出更具侵袭性的行为,增殖率增加且有复发倾向。因此,其治疗可能是一项挑战。根据PRISMA指南,我们进行了系统的文献综述。我们纳入了有关放射组学方法在术前诊断和预后算法以及颅内脑膜瘤治疗规划中的应用的选定文章(荟萃分析、综述、回顾性研究和病例对照研究)。我们还分析了放射组学在鉴别脑膜瘤与其他具有相似放射学特征的中枢神经系统肿瘤方面的作用。在第一个研究阶段,共识别出273篇论文。根据纳入/排除标准进行仔细筛选后,本系统综述纳入了39篇文章。已确定了几种术前特征,以加强术前颅内脑膜瘤评估,从而指导决策过程。开发有效且可靠的非侵入性诊断和预后方法可能对脑膜瘤治疗产生重大临床影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f566/9026541/f7c6c3d1c021/life-12-00586-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验