Suppr超能文献

使用自然语言处理和机器学习进行半自动标题-摘要筛选。

Semi-automated title-abstract screening using natural language processing and machine learning.

机构信息

University of Heidelberg - Institute of Medical Biometry, Heidelberg, Germany.

Fraunhofer Institute for Industrial Mathematics - Department of Optimization, Kaiserslautern, Germany.

出版信息

Syst Rev. 2024 Nov 1;13(1):274. doi: 10.1186/s13643-024-02688-w.

Abstract

BACKGROUND

Title-abstract screening in the preparation of a systematic review is a time-consuming task. Modern techniques of natural language processing and machine learning might allow partly automatization of title-abstract screening. In particular, clear guidance on how to proceed with these techniques in practice is of high relevance.

METHODS

This paper presents an entire pipeline how to use natural language processing techniques to make the titles and abstracts usable for machine learning and how to apply machine learning algorithms to adequately predict whether or not a publication should be forwarded to full text screening. Guidance for the practical use of the methodology is given.

RESULTS

The appealing performance of the approach is demonstrated by means of two real-world systematic reviews with meta analysis.

CONCLUSIONS

Natural language processing and machine learning can help to semi-automatize title-abstract screening. Different project-specific considerations have to be made for applying them in practice.

摘要

背景

在系统评价的准备过程中,标题-摘要筛选是一项耗时的任务。自然语言处理和机器学习的现代技术可能允许部分自动化标题-摘要筛选。特别是,如何在实践中使用这些技术的明确指导具有高度相关性。

方法

本文介绍了如何使用自然语言处理技术使标题和摘要可用于机器学习,以及如何应用机器学习算法来充分预测出版物是否应转发全文筛选的整个流程。提供了该方法实际使用的指南。

结果

通过两项具有荟萃分析的真实系统评价证明了该方法的吸引力。

结论

自然语言处理和机器学习可以帮助半自动标题-摘要筛选。在实践中应用它们时,需要考虑不同的项目特定因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0792/11529237/d3b93d71d391/13643_2024_2688_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验