University of Heidelberg - Institute of Medical Biometry, Heidelberg, Germany.
Fraunhofer Institute for Industrial Mathematics - Department of Optimization, Kaiserslautern, Germany.
Syst Rev. 2024 Nov 1;13(1):274. doi: 10.1186/s13643-024-02688-w.
Title-abstract screening in the preparation of a systematic review is a time-consuming task. Modern techniques of natural language processing and machine learning might allow partly automatization of title-abstract screening. In particular, clear guidance on how to proceed with these techniques in practice is of high relevance.
This paper presents an entire pipeline how to use natural language processing techniques to make the titles and abstracts usable for machine learning and how to apply machine learning algorithms to adequately predict whether or not a publication should be forwarded to full text screening. Guidance for the practical use of the methodology is given.
The appealing performance of the approach is demonstrated by means of two real-world systematic reviews with meta analysis.
Natural language processing and machine learning can help to semi-automatize title-abstract screening. Different project-specific considerations have to be made for applying them in practice.
在系统评价的准备过程中,标题-摘要筛选是一项耗时的任务。自然语言处理和机器学习的现代技术可能允许部分自动化标题-摘要筛选。特别是,如何在实践中使用这些技术的明确指导具有高度相关性。
本文介绍了如何使用自然语言处理技术使标题和摘要可用于机器学习,以及如何应用机器学习算法来充分预测出版物是否应转发全文筛选的整个流程。提供了该方法实际使用的指南。
通过两项具有荟萃分析的真实系统评价证明了该方法的吸引力。
自然语言处理和机器学习可以帮助半自动标题-摘要筛选。在实践中应用它们时,需要考虑不同的项目特定因素。