(Epi-)Genetic Regulation of Fungal Virulence, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany.
Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany.
Microb Biotechnol. 2024 Nov;17(11):e70039. doi: 10.1111/1751-7915.70039.
The high therapeutic potential of psilocybin, a prodrug of the psychotropic psilocin, holds great promise for the treatment of mental disorders such as therapy-refractory depression, alcohol use disorder and anorexia nervosa. Psilocybin has been designated a 'Breakthrough Therapy' by the US Food and Drug Administration, and therefore a sustainable production process must be established to meet future market demands. Here, we present the development of an in vivo psilocybin production chassis based on repression of l-tryptophan catabolism. We demonstrate the proof of principle in Saccharomyces cerevisiae expressing the psilocybin biosynthetic genes. Deletion of the two aminotransferase genes ARO8/9 and the indoleamine 2,3-dioxygenase gene BNA2 yielded a fivefold increase of psilocybin titre. We transferred this knowledge to the filamentous fungus Aspergillus nidulans and identified functional ARO8/9 orthologs involved in fungal l-tryptophan catabolism by genome mining and cross-complementation. The double deletion mutant of A. nidulans resulted in a 10-fold increased psilocybin production. Process optimization based on respiratory activity measurements led to a final psilocybin titre of 267 mg/L in batch cultures with a space-time-yield of 3.7 mg/L/h. These results demonstrate the suitability of our engineered A. nidulans to serve as a production strain for psilocybin and other tryptamine-derived pharmaceuticals.
裸盖菇素前体 psilocybin 具有很高的治疗潜力,有望治疗抑郁症、酒精使用障碍和神经性厌食等精神障碍,但这些患者对现有疗法没有反应。psilocybin 已被美国食品和药物管理局(FDA)指定为“突破性疗法”,因此必须建立可持续的生产工艺,以满足未来的市场需求。在这里,我们提出了一种基于 l-色氨酸分解代谢抑制的体内 psilocybin 生产底盘的开发。我们在表达 psilocybin 生物合成基因的酿酒酵母中证明了这一原理的可行性。敲除两个转氨酶基因 ARO8/9 和吲哚胺 2,3-双加氧酶基因 BNA2 可使 psilocybin 产量增加五倍。我们将这一知识转移到丝状真菌 Aspergillus nidulans 中,并通过基因组挖掘和交叉互补鉴定了参与真菌 l-色氨酸分解代谢的功能性 ARO8/9 同源物。A. nidulans 的双缺失突变导致 psilocybin 产量增加了 10 倍。基于呼吸活性测量的工艺优化导致分批培养中最终 psilocybin 产量达到 267mg/L,时空产率为 3.7mg/L/h。这些结果表明,我们工程化的 A. nidulans 适合作为 psilocybin 和其他色胺衍生药物的生产菌株。