Suppr超能文献

植物启发型生长机器人的动态建模与位置/力预测控制。

Dynamic modelling and predictive position/force control of a plant-inspired growing robot.

机构信息

Department of Mechatronics and Robotics Engineering, Egypt-Japan University of Science and Technology, E-JUST, Alexandria, Egypt.

Faculty of Science and Engineering, Waseda University, Tokyo, Japan.

出版信息

Bioinspir Biomim. 2024 Nov 12;20(1). doi: 10.1088/1748-3190/ad8e25.

Abstract

This paper presents the development and control of a dynamic model for a plant-inspired growing robot, termed the 'vine-robot', using the Euler-Lagrangian method. The unique growth mechanism of the vine-robot enables it to navigate complex environments by extending its body. We derive the dynamic equations of motion and employ model predictive control to regulate the task space position, orientation, and interaction forces. Simulation experiments are conducted to evaluate the performance of the proposed model and control strategy. The results demonstrate that the model effectively achieves sub-millimeter precision in the position control in both static and time varying refrence trajectroies, and sub micronewton in force control.

摘要

本文采用欧拉-拉格朗日方法,提出了一种基于植物启发的生长机器人(“藤蔓机器人”)的动态建模与控制方法。藤蔓机器人的独特生长机制使其能够通过伸展身体来在复杂环境中导航。我们推导出运动的动力学方程,并采用模型预测控制来调节任务空间的位置、姿态和相互作用力。通过仿真实验评估了所提出的模型和控制策略的性能。结果表明,该模型在静态和时变参考轨迹的位置控制中能够达到亚毫米级的精度,在力控制中能够达到亚微牛顿级的精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验