Suppr超能文献

基于虚拟筛选、ADMET 预测、分子对接和动态模拟研究的天然产物作为 BACE1 抑制剂用于阿尔茨海默病治疗。

Virtual screening, ADMET prediction, molecular docking, and dynamic simulation studies of natural products as BACE1 inhibitors for the management of Alzheimer's disease.

机构信息

Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran.

出版信息

Sci Rep. 2024 Nov 2;14(1):26431. doi: 10.1038/s41598-024-75292-6.

Abstract

Alzheimer's disease (AD) is a degenerative neurological disorder that chronically and irreversibly affects memory, cognitive function, learning ability, and organizational skills. Numerous studies have demonstrated BACE1 as a critical therapeutic target for AD, emphasizing the need for specific inhibition of BACE1 to develop effective therapeutics. However, current BACE1 inhibitors have certain limitations. Therefore, the aim of this study was to identify potential novel candidates derived from natural products that can be utilized for the treatment of AD. To achieve this, 80,617 natural compounds from the ZINC database were subjected to virtual screening and subsequently filtered according to the rule of five (RO5), leading to the identification of 1,200 compounds. Subsequently, the 1,200 compounds underwent molecular docking studies against the BACE1 receptor, utilizing high-throughput virtual screening (HTVS), standard precision (SP), and extra precision (XP) techniques to identify high-affinity ligands. Of the 50 ligands that exhibited the highest G-Scores in HTVS, further analysis was conducted using SP docking and scoring methods. This analysis led to the identification of seven ligands with enhanced binding affinities, which were then subjected to additional screening via XP docking and scoring. Finally, the stability of the most promising ligand in relation to BACE1 was assessed through molecular dynamics (MD) simulations. The computational screening demonstrated that the docking energy values for seven ligands binding to target enzymes ranged between - 6.096 and - 7.626 kcal/mol. Among these, ligand 2 (L2) exhibited the best binding energy at -7.626 kcal/mol with BACE1. MD simulations further confirmed the stability of the BACE1-L2 complex, emphasizing the formation of a robust interaction between L2 and the target enzymes. Additionally, pharmacokinetic and drug-likeness evaluations indicated that L2 is non-carcinogenic and able to permeate the blood-brain barrier (BBB). The findings of this study will contribute to narrowing down the selection of candidates for subsequent in vitro and in vivo testing.

摘要

阿尔茨海默病(AD)是一种慢性且不可逆转地影响记忆、认知功能、学习能力和组织技能的退行性神经疾病。大量研究表明 BACE1 是 AD 的一个关键治疗靶点,强调需要特异性抑制 BACE1 来开发有效的治疗方法。然而,目前的 BACE1 抑制剂存在一定的局限性。因此,本研究旨在从天然产物中寻找潜在的新型候选物,用于治疗 AD。为了实现这一目标,对 ZINC 数据库中的 80617 种天然化合物进行了虚拟筛选,随后根据五规则(RO5)进行了筛选,确定了 1200 种化合物。随后,对 1200 种化合物进行了分子对接研究,对接 BACE1 受体,利用高通量虚拟筛选(HTVS)、标准精度(SP)和扩展精度(XP)技术识别高亲和力配体。在 HTVS 中显示出最高 G 评分的 50 种配体中,进一步使用 SP 对接和评分方法进行了分析。这一分析确定了 7 种具有增强结合亲和力的配体,然后通过 XP 对接和评分进行了进一步筛选。最后,通过分子动力学(MD)模拟评估了与 BACE1 最相关的最有希望的配体的稳定性。计算筛选表明,七种配体与靶酶结合的对接能值范围在-6.096 到-7.626 kcal/mol 之间。其中,配体 2(L2)与 BACE1 的结合能最佳,为-7.626 kcal/mol。MD 模拟进一步证实了 BACE1-L2 复合物的稳定性,强调了 L2 与靶酶之间形成了强大的相互作用。此外,药代动力学和类药性评价表明 L2 无致癌性且能够穿透血脑屏障(BBB)。本研究的结果将有助于缩小候选物的选择范围,以便进行后续的体外和体内测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/714f/11531584/0b420815283d/41598_2024_75292_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验