Suppr超能文献

对中国674个城市城市盗窃犯罪的贝叶斯分析。

Bayesian analysis of urban theft crime in 674 Chinese cities.

作者信息

Zheng Haolei, Liu Daqian, Wang Yang, Yue Xiaoli

机构信息

Faculty of Geography, Yunnan Normal University, Kunming, 650500, China.

Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.

出版信息

Sci Rep. 2024 Nov 2;14(1):26447. doi: 10.1038/s41598-024-77754-3.

Abstract

Current academic research on fitting the volume of urban theft crimes at a macro size is limited, especially from the urban functionality perspective. Given this gap, this study utilizes a Bayesian model to conduct a fitting analysis of theft crime data from 674 cities in China from 2018 to 2020. This research aims to explore novel pathways for theft crime fitting. Results indicate that the size of urban functionality, particularly points of interest (POIs), exhibits excellent performance in fitting theft crimes, with POIs related to public services and commercial activities demonstrating the most significant fitting effects. This research successfully identifies effective indicators for crime fitting, thereby offering a new perspective and supplement to theft crime research. This study holds significant value for gaining a profound understanding of criminal phenomena and explaining the causes and mechanisms underlying the differences in theft crimes among various cities in China.

摘要

当前关于宏观层面城市盗窃犯罪量拟合的学术研究有限,尤其是从城市功能角度的研究。鉴于这一空白,本研究利用贝叶斯模型对2018年至2020年中国674个城市的盗窃犯罪数据进行拟合分析。本研究旨在探索盗窃犯罪拟合的新途径。结果表明,城市功能规模,特别是兴趣点(POI),在拟合盗窃犯罪方面表现出色,与公共服务和商业活动相关的POI显示出最显著的拟合效果。本研究成功识别出犯罪拟合的有效指标,从而为盗窃犯罪研究提供了新的视角和补充。本研究对于深入理解犯罪现象以及解释中国各城市盗窃犯罪差异的成因和机制具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77b7/11531566/71ba37746543/41598_2024_77754_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验