Suppr超能文献

构建老年乳腺癌患者抑郁症状风险预测模型的列线图。

Construction of a nomogram risk prediction model for depressive symptoms in elderly breast cancer patients.

机构信息

School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.

Nursing Department, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China.

出版信息

Sci Rep. 2024 Nov 2;14(1):26433. doi: 10.1038/s41598-024-78038-6.

Abstract

The primary objective of this study was to identify the factors associated with the development of depressive symptoms in elderly breast cancer (BC) patients and to construct a nomogram model for predicting these symptoms. We recruited 409 patients undergoing BC treatment in the breast departments of two tertiary-level hospitals in Jiangsu Province from November 2023 to April 2024 as our study cohort. Participants were categorized into depressed and non-depressed groups based on their clinical outcomes. Univariate and multivariate logistic regression analyses were employed to identify independent risk factors for depression among BC patients. Multivariate analysis revealed that monthly income, pain score, family support score, and physical activity score significantly influenced the onset of depression in older BC patients (P < 0.05).The risk prediction model, constructed using these identified factors, demonstrated excellent discriminatory power, as evidenced by an area under the ROC curve (AUC) of 0.824. The maximum Youden index was 0.627, with a sensitivity of 90.60%, specificity of 72.10%, and a diagnostic threshold value of 1.501. The results of the Hosmer-Lemeshow goodness-of-fit test (χ² = 3.181, P = 0.923) indicated that the model fit the data well. The calibration curve for the model closely followed the ideal curve, suggesting a strong fit and high predictive accuracy. Our nomogram model exhibited superior predictive performance, enabling healthcare professionals to identify high-risk patients early and implement preventative measures to mitigate the development of depressive symptoms. This study is a cross-sectional study that lacks longitudinal data and has a small sample size. Future research could involve larger samples, multicenter studies, and prospective designs to build better clinical predictive models.

摘要

本研究的主要目的是确定与老年乳腺癌(BC)患者抑郁症状发展相关的因素,并构建预测这些症状的列线图模型。我们招募了 2023 年 11 月至 2024 年 4 月江苏省两家三级医院乳腺科接受 BC 治疗的 409 名患者作为研究队列。根据临床结果,将参与者分为抑郁组和非抑郁组。采用单因素和多因素逻辑回归分析确定 BC 患者抑郁的独立危险因素。多因素分析显示,月收入、疼痛评分、家庭支持评分和身体活动评分显著影响老年 BC 患者抑郁的发生(P<0.05)。使用这些确定的因素构建的风险预测模型具有良好的区分能力,ROC 曲线下面积(AUC)为 0.824。最大 Youden 指数为 0.627,灵敏度为 90.60%,特异性为 72.10%,诊断阈值为 1.501。Hosmer-Lemeshow 拟合优度检验(χ²=3.181,P=0.923)的结果表明模型拟合数据良好。模型的校准曲线与理想曲线密切吻合,表明拟合度强,预测准确性高。我们的列线图模型具有优异的预测性能,使医护人员能够早期识别高风险患者,并采取预防措施减轻抑郁症状的发展。这是一项横断面研究,缺乏纵向数据且样本量较小。未来的研究可以包括更大的样本、多中心研究和前瞻性设计,以建立更好的临床预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44a0/11531583/3392c037e2fa/41598_2024_78038_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验